Как выглядит кровь под микроскопом. Ткани и органы человека под микроскопом (15 фото). Эритроцит, – какой он? Каково его строение? Что такое гемоглобин

Почти все из представленных здесь изображений сделаны с помощью сканирующего электронного микроскопа (СЭМ). Испускаемый таким прибором пучок электронов взаимодействует с атомами нужного объекта, результатом чего становятся 3D-изображения высочайшей разрешающей способности. Увеличение в 250000 раз позволяет разглядеть детали размером 1-5 нанометров (то есть миллиардных долей метра).

Первое СЭМ-изображение получил в 1935 году Макс Кнолль, а уже в 1965 году Кембриджская инструментальная компания предложила фирме «Дюпон» свой «Стереоскан». Сейчас такие устройства широко применяются в научно-исследовательских центрах.

Рассматривая предлагаемые ниже снимки, вы совершите путешествие по своему телу, начиная с головы и заканчивая кишечником и органами таза. Вы увидите, как выглядят нормальные клетки и что происходит с ними, когда их поражает рак, а также получите наглядное представление о том, как, скажем, происходит первая встреча яйцеклетки и сперматозоида.

Здесь изображена, можно сказать, основа вашей крови - красные кровяные тельца (RBC). На этих симпатичных двояковогнутых клетках лежит ответственная задача разносить по всему телу кислород. Обычно в одном кубическом миллиметре крови таких клеток 4-5 миллионов у женщин и 5-6 миллионов у мужчин. У людей, живущих на высокогорье, где ощущается недостаток кислорода, красных телец еще больше.


Чтобы избежать такого невидимого для обычного глаза расщепления волос, надо регулярно стричься и пользоваться хорошими шампунями и кондиционерами.


Из 100 миллиардов нейронов вашего мозга клетки Пуркинье одни из самых крупных. Помимо прочего, они отвечают в коре мозжечка за двигательную координацию. На них губительно действуют как отравление алкоголем или литием, так и аутоиммунные заболевания, генетические отклонения (включая аутизм), а также нейродегенеративные болезни (Альцгеймера, Паркинсона, рассеянный склероз и т. п.).


Вот как выглядят стереоцилии, то есть чувствительные элементы вестибулярного аппарата внутри вашего уха. Улавливая звуковые колебания, они контролируют ответные механические движения и действия.


Здесь изображены кровеносные сосуды сетчатки глаза, выходящие из окрашенного в черный цвет диска зрительного нерва. Этот диск представляет собой «слепое пятно», так как на этом участке сетчатки нет световых рецепторов.


На языке у человека находится около 10000 вкусовых рецепторов, которые помогают определить на вкус соленое, кислое, горькое, сладкое и острое.


Чтобы на зубах не было таких похожих на необмолоченные колоски наслоений, желательно чистить зубы почаще.


Вспомните, как красиво выглядели здоровые красные кровяные тельца. А теперь посмотрите, какими они становятся в паутине смертельно опасного кровяного тромба. В самом центре находится белое кровяное тельце (лейкоцит).


Перед вами вид вашего легкого изнутри. Пустые полости - это альвеолы, где и происходит обмен кислорода на углекислый газ.


А теперь взгляните, как отличаются деформированные раком легкие от здоровых на предыдущем снимке.

Ворсинки тонкой кишки увеличивают ее площадь, что способствует лучшему усвоению пищи. Это выросты неправильной цилиндрической формы высотой до 1,2 миллиметра. Основу ворсинки составляет рыхлая соединительная ткань. В центре, подобно стержню, проходит широкий лимфатический капилляр, или млечный синус, а по сторонам от него располагаются кровеносные сосуды и капилляры. По млечному синусу в лимфу, а затем в кровь попадают жиры, а по кровеносным капиллярам ворсинок поступают в кровоток белки и углеводы. При внимательном рассмотрении можно заметить в бороздках пищевые остатки.


Здесь вы видите человеческую яйцеклетку. Яйцеклетка покрыта гликопротеиновой оболочкой (zona pellicuda), которая не только защищает ее, но и помогает захватить и удержать сперматозоид. К оболочке прикреплены две корональные клетки.


На снимке схвачен момент, когда несколько сперматозоидов стараются оплодотворить яйцеклетку.


Это похоже на войну миров, на самом же деле перед вами яйцеклетка через 5 дней после оплодотворения. Некоторые сперматозоиды все еще удерживаются на ее поверхности. Изображение сделано с помощью конфокального (софокусного) микроскопа. Яйцеклетка и ядра сперматозоидов окрашены в пурпурный цвет, тогда как жгутики сперматозоидов - в зеленый. Голубые участки - это нексусы, межклеточные щелевые контакты, осуществляющие связь между клетками.


Вы присутствуете при начале нового жизненного цикла. Шестидневный эмбрион человека имплантируется в эндометрий, слизистую оболочку полости матки. Пожелаем ему удачи!

Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B 12 , фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Нейтрофилы

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Базофилы

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эозинофилы

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигаютмкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Лимфоциты

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек. Цитоплазма окрашена в светло-синий цвет, вокруг ядра она более светлая. В некоторых лимфоцитах цитоплазма имеет азурофильную зернистость, которая при окрашивании становится красной.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %). Первые прошли созревание в тимусе, вторые – в селезенке и лимфатических узлах. B-лимфоциты крупнее по размерам, чем T-лимфоциты. Продолжительность жизни этих лейкоцитов до 90 дней. Кровь для них – транспортная среда, посредством которой они попадают в ткани, где требуется их помощь.

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их. Для каждого вида микробов эти белки специфические и способны уничтожить только определенный вид, поэтому резистентность, которую формируют эти лимфоциты, специфическая, и направлена она преимущественно против бактерий.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней. В этом случае вводится слабый микроб, чтобы человек легко перенес заболевание, и в результате образуются клетки памяти. Они могут остаться на всю жизнь или на какой-то определенный период, по истечении которого требуется прививку повторить.

Моноциты

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми. Продолжительность жизни макрофагов – несколько месяцев. Они могут постоянно находиться в одном месте (резидентные клетки) или перемещаться (блуждающие).

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз. Моноциты уничтожают вредные бактерии и сдерживают размножение вирусов. Они способны выполнять команды, но не могут различать специфические антигены.

Тромбоциты

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови. В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток. По их количественным и качественным изменениям медики имеют возможность заподозрить развитие патологий. Состав крови – это первое, что изучает врач при обращении пациента.

Кровь под микроскопом и группы крови человека

С давних времен человеческую кровь наделяли мистическими свойствами. Люди приносили жертвы богам с непременным обрядом кровопускания. Прикосновением свеженадрезанных ран скреплялись священные клятвы. «Плачущий» кровью деревянный идол был последним аргументом жрецов в попытке убедить в чем-либо соплеменников. Древние греки считали кровь хранительницей свойств человеческой души.

Современная наука проникла во многие тайны крови, но исследования продолжаются по сей день. Медицина, иммунология, геногеография, биохимия, генетика изучают биофизические и химические свойства крови в комплексе. Сегодня мы знаем, что представляют собой группы крови человека. Высчитан оптимальный состав крови человека, придерживающегося здорового образа жизни. Выявлено, что уровень сахара в крови человека изменяется в зависимости от его физического и психического состояния. Ученые нашли ответ на вопрос «сколько крови в человеке и какова скорость кровотока?» не из праздного любопытства, а с целью диагностики и лечения сердечно-сосудистых и других заболеваний.

Микроскоп давно стал незаменимым помощником человека во многих сферах. В объектив прибора можно увидеть то, что не видно невооруженным глазом. Интереснейший объект для исследований представляет собой кровь. Под микроскопом можно рассмотреть основные элементы состава крови человека: плазму и форменные элементы.

Впервые состав крови человека исследовал врач - итальянец Марчелло Мальпиги. Он принял плавающие в плазме форменные элементы за жировые шарики. Клетки крови еще не раз называли то воздушными шариками, то животными, принимая их за разумных существ. Термин «кровяные клетки» или «кровяные шарики» ввел в научный обиход Антоний Левенгук. Кровь под микроскопом – это своеобразное зеркало состояния человеческого организма. По одной капле можно определить, что в данный момент беспокоит человека. Гематология или наука изучающая кровь, кроветворение и специфические заболевания, сегодня переживает бум своего развития. Благодаря изучению крови, в практику медиков внедряются новые высокотехнологичные методы диагностики болезней и их лечения.

Кровь больного человека

Кровь здорового человека

Кровь здорового человека (электронный микроскоп)

Вы тоже можете приобщиться к миру науки с помощью оптических приборов Альтами. Гистологические микропрепараты для изучения под микроскопом, к которым относятся и образцы крови, могут быть приготовлены в домашних условиях без специальной обработки. Для этого следует вымыть и обезжирить предметные стекла, на которые вы поместите каплю крови. Моментальным движением другого предметного стекла или шпателя размажьте жидкость тонким слоем. Для домашних экспериментов использование специальных красителей излишне. Высушите препарат на воздухе до исчезновения блеска и зафиксируйте на предметном столике, предварительно положив сверху покровное стекло. Временный биопрепарат пригоден к использованию всего несколько часов, но и их будет достаточно, чтобы разгадать тайны крови с нашей подсказкой.

Кстати говоря, для того, чтобы увидеть, что входит в состав крови человека, вовсе необязательно резать палец. Достаточно воспользоваться готовыми микропрепаратами Альтами.

Итак, если посмотреть на кровь под микроскопом, под большим увеличением, то мы увидим, что в ней содержится много разных клеток. Сегодня известно, что кровь в организме человека является разновидностью соединительной ткани. Она состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. Кровяные клетки вырабатываются в красном костном мозге. Интересно, что у ребенка весь костный мозг красного цвета, в то время как у взрослого человека, кровь производится лишь в определенных костях.

Обратите внимание на розовые сплющенные шарики – эритроциты. Они переносят молекулы белка гемоглобина, который и придает эритроцитам нежный оттенок. С помощью белка эритроциты обогащают каждую клетку организма человека кислородом и удаляют углекислый газ. Если человек пьет немного воды, то эритроциты слипаются и плохо переносят гемоглобин. При определенных заболеваниях вырабатывается недостаточное количество эритроцитов, что приводит к кислородному голоданию тканей. Если кровь заражена грибком, эти кровяные клетки будут напоминать шестеренки или иметь форму изогнутых крючков.

Сворачиваемость крови (электронный микроскоп)

Общеизвестно, что существуют разные группы крови человека и резус-фактор, положительный или отрицательный. Именно эритроциты позволяют причислить кровь человека к той или иной группе и резусной принадлежности. Выявленные разнообразные реакции между эритроцитами одного человека и плазмой крови другого, позволили систематизировать кровь по группам и резусам. Разработка таблицы совместимости крови стоит в одном ряду с таким великим открытием как периодическая система химических элементов Менделеева.

Сегодня группу крови определяют в первые дни жизни новорожденного. Как и отпечатки пальцев, группы крови человека остаются неизменными на протяжении всей жизни. Еще в 1900 году мир не знал, что такое группы крови. Человека, которому требовалось переливание крови, подвергали процедуре, не догадываясь, что его кровь может быть несовместима с кровью донора. Австрийский иммунолог, нобелевский лауреат Карл Ландштейнер положил начало классификации жидкой соединительной ткани и открыл систему Резус. Свой окончательный вид таблица совместимости крови приобрела благодаря исследованиям чешского врача Якоба Янского.

Лейкоциты крови представлены несколькими видами клеток. Нейтрофилы или гранулоциты – это клетки, внутри которых расположено ядро из нескольких частей. Вокруг больших клеток рассыпана мелкая зернистость. У лимфоцитов круглое ядро поменьше, но оно занимает почти всю клетку. Бобовидное ядро свойственно моноцитам.

Эритроциты или красные кровяные тельца (электронный микроскоп)

Эритроциты или красные кровяные тельца

Лейкоциты защищают нас от инфекций и заболеваний, в том числе таких грозных как рак. В то же время, функции клеток-воинов строго разграничены. Если Т-лимфоциты распознают и запоминают, как выглядят различные микробы, то В-лимфоциты вырабатывают против них антитела. Нейтрофилы «пожирают» инородные для организма вещества. В борьбе за здоровье человека погибают и микробы, и лимфоциты. Увеличенные в объеме лейкоциты свидетельствуют о наличии воспалительного процесса в организме.

Кровяные пластинки или тромбоциты ответственны за создание плотных сгустков крови, останавливающих небольшое кровотечение. Тромбоциты не имеют клеточного ядра и представляют собой скопления маленьких гранулированных клетки с грубой оболочкой. Как правило, тромбоциты «ходят строем», в количестве от 3 до 10 штук.

Жидкая часть крови называется плазмой. Эритроциты, лейкоциты и тромбоциты совместно с плазмой составляют важный компонент системы крови - периферическую кровь. Вас уже мучает вопрос: «сколько крови в человеке?». Тогда Вам интересно будет узнать, что общее количество крови во взрослом организме составляет 6–8% массы тела, а в теле ребенка – 8-9%. Теперь вы сами сможете подсчитать, сколько крови в человеке, зная его вес.

Кроме клеток крови, плазма содержит белки, минеральные вещества в виде ионов. Под объективом микроскопа Альтами видны и другие включения, вредные, которых не должно быть в крови здорового человека. Так, соли мочевой кислоты представлены в виде кристаллов, напоминающих осколки стекла. Кристаллы механически повреждают клетки крови и сдирают пленку со стенок сосудов. Холестерин выглядит как хлопья, которые оседают на стенках кровеносного сосуда и постепенно сужают его просвет. Наличие бактерий и грибков разнообразных неправильных форм свидетельствует о серьезных нарушениях иммунной системы человека.

Лейкоциты или белые кровяные тельца (электроннный микроскоп)

Макрофаги уничтожают инородные элементы. Они хорошие.

Вы можете обнаружить в крови кристаллоиды неправильной формы – это сахар, избыток которого приводит к нарушению обмена веществ. Уровень сахара в крови человека – важнейший показатель в клиническом анализе крови. Избежать таких болезней как сахарный диабет, некоторых болезней центральной нервной системы, гипертонии, атеросклероза и других можно, если сдавать раз в год анализ крови на содержание глюкозы. Уровень сахара в крови человека, повышенный или пониженный, прямо свидетельствует о предрасположенности к тому или иному заболеванию.

Благодаря увлекательнейшему занятию - исследованию капли крови под микроскопом Альтами – вы совершили путешествие в мир гематологии: узнали о составе крови и о том, какую важную роль она играет в организме человека.

Комментарии (3)

Искал ответы для ребенка, а прочитал, сам узнал много нового. Спасибо большое за статью, удачи. 😉

Спасибо за интересную статью. Скажите пожалуйста, какое увеличение микроскопа нужно для просмотра крови?

Посмотрел на свою кровь под x40 увеличением, выходит, что я больной человек(

Оставить комментарий

Для того, чтобы оставить свое мнение о продукте, вам нужно вайти в систему как пользователь

Снег под микроскопом - ваша личная коллекция

Преодолевая слои атмосферы, снежинки устремляются вниз, чтобы стать объектом нашего следующего исследования.

Новогодняя елка под микроскопом

Лучший подарок под елочку – микроскоп Альтами! Убедитесь в это сами…

Самоцветы под микроскопом: демантоид

Миллионы лет кристаллы каменных цветов росли в недрах Земли для того, чтобы стать эталоном красоты в мире человека.

О чем расскажут волосы под микроскопом?

Нет, это не потрескавшаяся краска, а волос человека под большим увеличением.

Пыльца под микроскопом

Что такое пыльца знают все. Но мало кто знает, что именно из себя представляют эти частички.

Плесень под микроскопом: знайте врага в лицо.

Плесень - одно из самых древних существ на нашей планете.

Кристаллы под микроскопом: совершенство изнутри

Для того, чтобы развеять тайны и загадки кристалла достаточно посмотреть в микроскоп.

Насекомые в янтаре – застывшее мгновение

Заглядывая в прошлое или что таит в себе янтарь.

Инфузория-туфелька под микроскопом

Разведение инфузорий-туфелек в домашних условиях для изучения под микроскопом.

Подготовка микропрепаратов

Узнайте, как просто создавать микропрепараты своими руками!

Строение клетки под микроскопом

Нам стало интересно, из чего состоит клетка, и в чем отличие растительной клетки от животной.

Микроскоп - умный подарок для ребенка

Если вас волнует вопрос «Что подарить ребенку», то вам стоит прочитать эту статью.

Бумага под микроскопом и микроскоп для бумаги

Нам стало интересно, как выглядит бумага различного типа под большим увеличением.

Фальшивые деньги против микроскопов Альтами

Недавно в магазине оказалось, что 1000 рублей фальшивые. Наш юный помощник решил рассмотреть их поближе.

Напишите нам, и мы разместим вашу статью!

Все права защищены.

Забыли пароль? Нажмите, чтобы вам выслали новый

Клетки крови человека - функции, где образуются и разрушаются

Кровь - важнейшая система в человеческом организме, выполняющая множество различных функций. Кровь является транспортной системой, по которой к органам переносятся жизненно необходимые вещества и удаляются из клеток отработанные вещества, продукты распада и прочие элементы, которые подлежат выведению из организма. В крови также происходит циркуляция веществ и клеток, которые обеспечивают защиту организма в целом.

Кровь состоит из клеток и жидкой части - сыворотки, состоящей из белков, жиров, сахаров и микроэлементов.

В составе крови выделяют три основных вида клеток:

Эритроциты – клетки, транспортирующие кислород к тканям

Эритроцитами называют высокоспециализированные клетки, не имеющие ядра (утрачивается в ходе созревания). Большая часть клеток представлена двояковогнутыми дисками, средний диаметр которых составляет 7 мкм, а периферическая толщина - 2-2,5 мкм. Существуют также шарообразные и куполообразные эритроциты.

Благодаря форме поверхность клетки значительно увеличивается для газовой диффузии. Также подобная форма способствует увеличению пластичности эритроцита, благодаря чему он деформируется и свободно движется по капиллярам.

Эритроциты и лейкоциты человека

У патологических и старых клеток пластичность очень низкая, в связи с чем они задерживаются и разрушаются в капиллярах ретикулярной ткани селезенки.

Эритроцитарная мембрана и безъядерность клеток обеспечивают основную функцию эритроцитов - транспортировку кислорода и углекислого газа. Мембрана является абсолютно непроницаемой для катионов (кроме калия) и высокопроницаемой для анионов. Мембрана на 50% состоит из белков, определяющих принадлежность крови к группе и обеспечивающих отрицательный заряд.

Эритроциты различны между собой по:

Видео: Эритроциты

Эритроциты – самые многочисленные клетки в крови человека

Эритроциты классифицируют по степени зрелости на группы, имеющие свои отличительные признаки

В периферической крови встречаются как зрелые, так и молодые и старые клетки. Молодые эритроциты, в которых имеются остатки ядер, называются ретикулоцитами.

Количество молодых эритроцитов в крови не должно превышать 1% от всей массы красных клеток. Увеличение содержания ретикулоцитов указывает на усиленный эритропоэз.

Процесс образования эритроцитов называется эритропоэзом.

  • Костном мозге костей черепа;
  • Таза;
  • Туловища;
  • Грудины и позвоночных дисках;
  • До 30 лет эритропоэз происходит также в плечевых и бедренных костях.

Ежедневно костный мозг образует более 200 млн. новых клеток.

После полного созревания, клетки проникают в кровеносную систему сквозь капиллярные стенки. Продолжительность жизни эритроцитов составляет от 60 до 120 дней. Менее 20% гемолиза эритроцитов происходит внутри сосудов, остальные разрушаются в печени и селезенке.

Функции эритроцитов

  • Выполняют транспортную функцию. Кроме кислорода и углекислого газа клетки переносят липиды, белки и аминокислоты;
  • Способствуют выведению токсинов из организма, а также ядов, которые образуются в результате метаболических и жизненных процессов микроорганизмов;
  • Активно участвуют в поддержании баланса кислоты и щелочи;
  • Участвуют в процессе свертываемости крови.

Гемоглобин

В состав эритроцита входит сложный железосодержащий белок гемоглобин, основной функцией которого является перенос кислорода между тканями и легкими, а так же частичная транспортировка углекислого газа.

В состав гемоглобина входит:

  • Крупная молекула белка - глобин;
  • Встроенная в глобин небелковая структура - гема. В сердцевине гемы расположен ион железа.

В легких железо связывается с кислородом, и именно эта связь способствует приобретению кровью характерного оттенка.

Группы крови и резус-фактор

На поверхности красных кровяных телец располагаются антигены, которых существует насколько разновидностей. Именно поэтому кровь одного человека может отличаться от крови другого. Антигены формируют резус-фактор и групповую принадлежность крови.

Наличие/отсутствие на поверхности эритроцита антигена Rh определяет резус-фактор (при наличии Rh резус положительный, при отсутствии - отрицательный).

Определение резус-фактора и групповой принадлежности крови человека имеет большое значение при переливании донорской крови. Некоторые антигены несовместимы друг с другом, вызывая разрушение клеток крови, что может привести к гибели пациента. Очень важно переливать кровь от донора, группа крови и резус-фактор которого совпадают с показателями реципиента.

Лейкоциты - клетки крови, выполняющие функцию фагоцитоза

Лейкоцитами, или белыми кровяными тельцами, называют клетки крови, выполняющие защитную функцию. Лейкоциты содержат ферменты, разрушающие инородные белки. Клетки способны обнаружить вредоносных агентов, «атаковать» их и уничтожить (фагоцитировать). Кроме ликвидации вредных микрочастиц лейкоциты принимают активное участие в очищении крови от продуктов распада и метаболизма.

Благодаря антителам, которые вырабатываются лейкоцитами, организм человека становится устойчивым к некоторым заболеваниям.

Лейкоциты оказывают благотворное влияние на:

  • Метаболические процессы;
  • Обеспечение органов и тканей нужными гормонами;
  • Ферментами и другими необходимыми веществами.

Лейкоциты разделяют на 2 группы: зернистые (гранулоциты) и незернистые (агранулоциты).

К зернистым лейкоцитам относят:

В группу незернистых лейкоцитов входят:

Нейтрофилы

Самая большая по численности группа лейкоцитов, составляющая почти 70% от их общего количества. Свое название данный вид лейкоцита получил из-за способности зернистости клетки окрашиваться красками, имеющими нейтральную реакцию.

Нейтрофилы классифицируют по форме ядра на:

  • Юные, не имеющие ядра;
  • Палочкоядерные, ядро которых представлено палочкой;
  • Сегментоядерные, ядро которых представляет собой соединенные между собой 4-5 сегментов.

Нейтрофилы

При подсчете нейтрофилов в анализе крови допустимо наличие не более 1% юных, не более 5% палочкоядерных и не более 70% сегментоядерных клеток.

Главной функцией нейтрофильных лейкоцитов является защитная, которая реализуется благодаря фагоцитозу - процессу обнаружения, захвата и уничтожения бактерий или вирусов.

1 нейтрофил способен «обезвредить» до 7 микробов.

Нейтрофил также принимает участие в развитии воспаления.

Базофилы

Самый малочисленный подвид лейкоцитов, объем которого составляет менее 1% от числа всех клеток. Базофильными лейкоциты названы из-за способности зернистости клетки окрашиваться только щелочными красителями (basic).

Функции базофильных лейкоцитов обусловлены присутствием в них активных биологических веществ. Базофилы продуцируют гепарин, который препятствует свертываемости крови в месте воспалительной реакции и гистамин, который расширяет капилляры, что приводит к скорейшему рассасыванию и заживлению. Базофилы также способствуют развитию аллергических реакций.

Эозинофилы

Подвид лейкоцитов, который получил свое название из-за того, что его гранулы окрашиваются кислыми красителями, основным из которых является эозин.

Количество эозинофилов составляет 1-5% от всей численности лейкоцитов.

Клетки обладают способностью фагоцитоза, но основной их функцией является обезвреживание и ликвидация белковых токсинов, инородных белков.

Также эозинофилы участвуют в саморегуляции систем организма, продуцируют обезвреживающие воспалительные медиаторы, участвуют в очищении крови.

Моноциты

Подвид лейкоцитов, не имеющий зернистости. Моноциты - крупные клетки, напоминающей треугольник формы. Моноциты имеют большое ядро различных форм.

Образование моноцита происходит в костном мозгу. В процессе созревания клетка проходит несколько стадий созревания и деления.

Сразу после того, как молодой моноцит созревает, он выходит в кровеносную систему, где живет 2-5 суток. После этого часть клеток гибнет, а часть уходит «дозревать» до стадии макрофагов - самых больших кровяных клеток, продолжительность жизни которых составляет до 3 месяцев.

Моноциты выполняют следующие функции:

  • Продуцируют ферменты и молекулы, которые способствуют развитию воспаления;
  • Участвуют в фагоцитозе;
  • Способствуют регенерации тканей;
  • Помогает в восстановлении нервных волокон;
  • Способствует росту тканей кости.

Моноциты

Макрофаги фагоцитируют вредоносные агенты, находящиеся в тканях и подавляют процесс размножения патогенных микроорганизмов.

Лимфоциты

Центральное звено системы защиты, которое отвечает за формирование специфического иммунного ответа и обеспечивает защиту от всего инородного в организме.

Образование, созревание и деление клеток происходит в костном мозге, откуда они по кровеносной системе отправляются в тимус, лимфоузлы и селезенку для полного созревания. В зависимости от того, где происходит полное созревание, выделяют Т-лимфоциты (созревшие в тимусе) и В-лимфоциты (созревшие в селезенке или в лимфатических узлах).

Основной функцией Т-лимфоцитов является защита организма, путем участия клеток в иммунных реакциях. Т-лимфоциты фагоцитируют патогенные агенты, уничтожают вирусы. Реакция, которую осуществляют данные клетки, носит название «неспецифическая резистентность».

В-лимфоцитами называются клетки, способные вырабатывать антитела - особые белковые соединения, которые препятствуют размножению антигенов и нейтрализуют токсины, выделяемые ими в процессе жизнедеятельности. На каждый из видов патогенного микроорганизма В-лимфоциты вырабатывают индивидуальные антитела, ликвидирующие конкретный вид.

Т-лимфоциты фагоцитируют, преимущественно, вирусы, В-лимфоциты уничтожают бактерии.

Какие антитела образуют лимфоциты?

В-лимфоциты вырабатывают антитела, которые содержатся в мембранах клеток и в сывороточной части крови. При развитии инфекции антитела начинают стремительно поступать в кровоток, где распознают болезнетворные агенты и «информируют» об этом иммунную систему.

Выделяют следующие виды антител:

  • Иммуноглобулин М - составляет до 10% от общего количества антител в организме. Являются наиболее крупными антителами и образуются сразу после внедрения антигена в организм;
  • Иммуноглобулин G - основная группа антител, которая играет ведущую роль в защите человеческого организма и формирует иммунитет у плода. Клетки являются самыми мелкими среди антител и способны преодолевать плацентарный барьер. Вместе с этим иммуноглобулином плоду передается иммунитет от многих патологий от матери ее будущему ребенку;
  • Иммуноглобулин А - защищают организм от влияния антигенов, попадающих в организм из внешней среды. Синтез иммуноглобулина А производится В-лимфоцитами, но большим количеством содержатся не в крови, а на слизистых оболочках, грудном молоке, слюне, слезах, моче, желчи и секретах бронхов и желудка;
  • Иммуноглобулин Е - антитела, выделяемые при аллергических реакциях.

Лимфоциты и иммунитет

После встречи микроба с В-лимфоцитом, последний способен формировать в организме «клетки памяти», что обуславливает устойчивость к патологиям, возбудителем которых является данная бактерия. Для появления клеток памяти, медициной разработаны вакцины, направленные на формирование иммунитета к особо опасным заболеваниям.

Где разрушаются лейкоциты?

Процесс разрушения лейкоцитов до конца не изучен. На сегодняшний день доказано, что из всех механизмов деструкции клеток в разрушении белых кровяных телец принимают участие селезенка и легкие.

Тромбоциты - клетки, защищающие организм от фатальной кровопотери

Тромбоциты - форменные кровяные элементы, которые участвуют в обеспечении гемостаза. Представлены мелкими клетками двояковыпуклой формы, не имеющие ядра. Диаметр тромбоцита варьируется в пределах 2-10 мкм.

Продуцируются тромбоциты красным костным мозгом, где проходят 6 циклов созревания, после чего выходят в кровоток и находятся там от 5 до 12 дней. Разрушение тромбоцитов происходит в печени, селезенке и костном мозге.

Находясь в кровотоке, тромбоциты имеют форму диска, но при активации тромбоцит приобретает форму сферы, на которой образуются псевдоподии - специальные выросты, с помощью которых тромбоциты соединяются между собой и прилипают к поврежденной поверхности сосуда.

В человеческом организме тромбоциты выполняют 3 основные функции:

  • Создают «пробки» на поверхности поврежденного кровеносного сосуда, способствуя остановке кровотечения (первичный тромб);
  • Участвуют в свертывании крови, что также важно для остановки кровотечения;
  • Тромбоциты предоставляют питание клеткам сосудов.

Тромбоциты классифицируют на.

Они имеют малые размеры, и рассмотреть их можно только под микроскопом.

Все клетки крови делятся на красные и белые. Первые – это эритроциты, составляющие большую часть всех клеток, вторые – лейкоциты.

К клеткам крови принято причислять и тромбоциты. Эти небольшие кровяные пластинки на самом деле не являются полноценными клетками. Они представляют собой мелкие фрагменты, отделившиеся от крупных клеток – мегакариоцитов.

Эритроциты

Эритроциты называются красными кровяными тельцами. Это самая многочисленная группа клеток. Они переносят кислород от органов дыхания к тканям и принимают участие в транспортировке углекислого газа от тканей к легким.

Место образование эритроцитов – красный костный мозг. Живут они 120 дней и разрушаются в селезенке и печени.

Образуются из клеток-предшественниц – эритробластов, которые перед превращением в эритроцит проходят разные стадии развития и несколько раз делятся. Таким образом, из эритробласта образуется до 64 красных кровяных клеток.

Эритроциты лишены ядра и по форме напоминают вогнутый с двух сторон диск, диаметр которого в среднем составляет около 7-7,5 мкм, а толщина по краям – 2,5 мкм. Такая форма способствует увеличению пластичности, необходимой для прохождения по мелким сосудам, и площади поверхности для диффузии газов. Старые эритроциты утрачивают пластичность, из-за чего задерживаются в мелких сосудах селезенки и там же разрушаются.

Большая часть эритроцитов (до 80 %) имеет двояковогнутую сферическую форму. Остальные 20 % могут иметь другую: овальную, чашеобразную, сферическую простую, серповидную и пр. Нарушение формы связано с различными заболеваниями (анемией, дефицитом витамина B 12 , фолиевой кислоты, железа и др.).

Большую часть цитоплазмы эритроцита занимает гемоглобин, состоящий из белка и гемового железа, которое придает крови красный цвет. Небелковая часть представляет собой четыре молекулы гема с атомом Fe в каждой. Именно благодаря гемоглобину эритроцит способен переносить кислород и выводить углекислый газ. В легких атом железа связывается с молекулой кислорода, гемоглобин превращается в оксигемоглобин, придающий крови алый цвет. В тканях гемоглобин отдает кислород и присоединяет углекислый газ, превращаясь в карбогемоглобин, в результате кровь становится темной. В легких углекислый газ отделяется от гемоглобина и выводится легкими наружу, а поступивший кислород вновь связывается с железом.

Кроме гемоглобина, в цитоплазме эритроцита содержатся различные ферменты (фосфатаза, холинэстеразы, карбоангидраза и др.).

Оболочка эритроцита имеет достаточно простое строение, по сравнению с оболочками других клеток. Она представляет собой эластичную тонкую сетку, что обеспечивает быстрый газообмен.

В крови здорового человека в небольших количествах могут быть недозрелые эритроциты, которые называются ретикулоцитами. Их количество увеличивается при значительной кровопотере, когда требуется возмещение красных клеток и костный мозг не успевает их производить, поэтому выпускает недозрелые, которые тем не менее способны выполнять функции эритроцитов по транспортировке кислорода.

Лейкоциты

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Нейтрофилы

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами. Из нейтрофилов и их остатков состоит гной. Лизосомные ферменты во время распада нейтрофилов высвобождаются и размягчают близлежащие ткани, формируя таким образом гнойный очаг.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными. Первые – это молодые клетки, вторые – зрелые. Клетки с сегментированным ядром составляют до 65 % от всех лейкоцитов, палочкоядерных в крови здорового человека – не более 5 %.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Базофилы

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эозинофилы

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигаютмкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек. Цитоплазма окрашена в светло-синий цвет, вокруг ядра она более светлая. В некоторых лимфоцитах цитоплазма имеет азурофильную зернистость, которая при окрашивании становится красной.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %). Первые прошли созревание в тимусе, вторые – в селезенке и лимфатических узлах. B-лимфоциты крупнее по размерам, чем T-лимфоциты. Продолжительность жизни этих лейкоцитов до 90 дней. Кровь для них – транспортная среда, посредством которой они попадают в ткани, где требуется их помощь.

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их. Для каждого вида микробов эти белки специфические и способны уничтожить только определенный вид, поэтому резистентность, которую формируют эти лимфоциты, специфическая, и направлена она преимущественно против бактерий.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней. В этом случае вводится слабый микроб, чтобы человек легко перенес заболевание, и в результате образуются клетки памяти. Они могут остаться на всю жизнь или на какой-то определенный период, по истечении которого требуется прививку повторить.

Моноциты

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми. Продолжительность жизни макрофагов – несколько месяцев. Они могут постоянно находиться в одном месте (резидентные клетки) или перемещаться (блуждающие).

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз. Моноциты уничтожают вредные бактерии и сдерживают размножение вирусов. Они способны выполнять команды, но не могут различать специфические антигены.

Тромбоциты

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови. В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток. По их количественным и качественным изменениям медики имеют возможность заподозрить развитие патологий. Состав крови – это первое, что изучает врач при обращении пациента.

назовите клетки крови

Красные кровяные тельца (эритроциты) - самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезенке. В эритроцитах содержится содержащий железо белок - гемоглобин, который обеспечивает главную функцию эритроцитов - транспорт газов, в первую очередь - кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгких гемоглобин связывает кислород, превращаясь в оксигемоглобин, он имеет светло-красный цвет. В тканях кислород освобождается из связи, снова образуется гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие и небольшое количество углекислого газа.

Кровяные пластинки (тромбоциты) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга мегакариоцитов. Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от опасной для жизни кровопотери.

Белые клетки крови (лейкоциты) являются частью иммунной системы организма. Все они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов - защита. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества, В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.

КРОВЬ

Кровь - это вязкая жидкость красного цвета, которая течет по кровеносной системе: состоит из особого вещества - плазмы, переносящей по всему организму различные виды оформленных элементов крови и множество других веществ.

ФУНКЦИИ КРОВИ:

Снабжать кислородом и питательными веществами весь организм.

Переносить продукты метаболизма и токсичные вещества к органам, ответственным за их нейтрализацию.

Переносить гормоны, вырабатываемые эндокринными железами, к тканям, для которых они предназначены.

Принимать участие в терморегуляции организма.

Взаимодействовать с иммунной системой.

ОСНОВНЫЕ КОМПОНЕНТЫ КРОВИ:

Плазма крови. Это жидкость, на 90 % состоящая из воды, переносящая все элементы, присутствующие в крови, по сердечно-сосудистой системе: кроме того что ппазма переносит кровяные клетки, она также снабжает органы питательными веществами, минералами, витаминами, гормонами и другими продуктами, задействованными в биологических процессах, и уносит продукты метаболизма. Некоторые из этих веществ сами свободно переносятся ппазмой, но многие из них нерастворимы и переносятся лишь вместе с белками, к которым присоединяются, и разделяются лишь в соответствующем органе.

Кровяные клетки. Рассматривая состав крови, вы увидите три вида кровяных клеток: красные кровяные тельца, по цвету такие же, как кровь, основные элементы, придающие ей красный цвет; белые кровяные тельца, отвечающие за множество функций; и тромбоциты, самые маленькие кровяные клетки.

КРАСНЫЕ КРОВЯНЫЕ ТЕЛЬЦА

Красные кровяные тельца, также называемые эритроцитами или красными кровяными пластинками, - довольно крупные кровяные клетки. Они имеют форму двояковогнутого диска и диаметр около 7,5 мкм, в действительности они не являются клетками как таковыми, поскольку в них отсутствует ядро; живут эритроциты около 120 дней. Эритроциты содержат гемоглобин - пигмент, состоящий из железа, благодаря которому кровь имеет красный цвет; именно гемоглобин ответствен за основную функцию крови - перенос кислорода от легких к тканям и продукта метаболизма - углекислого газа - от тканей к легким.

Красные кровяные тельца под микроскопом.

Если поставить в ряд все красные кровяные тельца взрослого человека, то получится более двух триллионов клеток (4,5 млн на мм3 умноженные на 5 л крови), их можно будет 5,3 раза разместить вокруг экватора.

БЕЛЫЕ КРОВЯНЫЕ ТЕЛЬЦА

Белые кровяные тельца, также называемые лейкоцитами, играют важную роль в иммунной системе, защищающей организм от инфекций. Различают несколько видов белых кровяных телец; все они имеют ядро, включая некоторые многоядерные лейкоциты, и характеризуются сегментированными ядрами причудливой формы, которые видны под микроскопом, поэтому лейкоциты разделяют на две группы: полиядерные и моноядерные.

Полиядерные лейкоциты также называют гранулоцитами, поскольку под микроскопом можно разглядеть в них несколько гранул, в которых находятся вещества, необходимые для выполнения определенных функций. Различают три основных типа гранулоцитов:

Нейтрофилы, которые поглощают (фагоцитируют) и перерабатывают болезнетворные бактерии;

Базофилы, которые выделяют особый секрет при аллергических реакциях.

Остановимся подробнее на каждом из трех типов гранулоцитов. Рассмотреть гранулоциты и клетки описания которых последуют далее в статье можно на схеме 1, приведенной ниже.

Схема 1. Клетки крови: белые и красные кровяные тельца, тромбоциты.

Нейтрофильные гранулоциты (Гр/н) - это подвижные сферические клетки диаметром 10-12 мкм. Ядро сегментированное, сегменты соединяются тонкими гетерохроматиновыми мостиками. У женщин может быть виден маленький удлиненный отросток, называемый барабанной палочкой (тельце Барра); он соответствует неактивному длинному плечу одной из двух Х-хромосом. На вогнутой поверхности ядра располагается крупный комплекс Гольджи; другие органеллы развиты слабее. Характерным для этой группы лейкоцитов является наличие клеточных гранул. Азурофильные, или первичные, гранулы (АГ) рассматриваются как первичные лизосомы с того момента, когда они уже содержат кислую фосфатазу, арилеульфатазу, В-галактозидазу, В-глюкоронидазу, 5-нуклеотидазу d-аминооксидазу и пероксидазу. Специфические вторичные, или нейтрофильные, гранулы (НГ) содержат бактерицидные вещества лизоцим и фагоцитин, а также фермент - щелочную фосфатазу. Нейтрофильные гранулоциты являются микрофагами, т. е. поглощают маленькие частички, такие как бактерии, вирусы, мелкие части разрушающихся клеток. Эти частички попадают внутрь тела клетки посредством захвата их короткими клеточными отростками, а затем разрушаются в фаголизосомах, внутрь которых азурофильные и специфические гранулы освобождают свое содержимое. Жизненный цикл нейтрофильных гранулоцитов около 8 дней.

Эозинофильные гранулоциты (Гр/э) - клетки, достигающие в диаметре 12 мкм. Ядро двудольное, комплекс Гольджи располагается вблизи вогнутой поверхности ядра. Клеточные органеллы хорошо развиты. Помимо азурофильных гранул (АГ), цитоплазма включает эозинофильные гранулы (ЭГ). Они имеют эллиптическую форму и состоят из тонкозернистого осмиофильного матрикса и единичных или множественных плотных пластинчатых кристаллоидов (Кр). Лизосомальные энзимы: лактоферрин и миелопероксидаза - сконцентрированы в матриксе, в то время как крупный основной белок, токсичный для некоторых гельминтов, располагается в кристаллоидах.

Базофильные гранулоциты (Гр/б) имеют диаметр около 10-12 мкм. Ядро почковидное или разделено на два сегмента. Клеточные органеллы плохо развиты. Цитоплазма включает в себя мелкие редкие пероксидазоположительные лизосомы, которые соответствуют азурофильным гранулам (АГ), и крупные базофильные гранулы (БГ). Последние содержат гистамин, гепарин и лейкотриены. Гистамин является сосудорасширяющим фактором, гепарин действует как антикоагулянт (вещество угнетающее активность свёртывающей системы крови и препятствующее образованию тромбов), а лейкотриены вызывают сужение бронхов. Эозинофильный хемотаксический фактор имеется также в гранулах, он стимулирует накопление эозинофильных гранул в местах аллергических реакций. Под воздействием веществ, вызывающих освобождение гистамина или IgE, в большинстве аллергических и воспалительных реакций может наступить дегрануляция базофилов. В связи с этим некоторые авторы полагают, что базофильные гранулоциты идентичны тучным клеткам соединительных тканей, хотя последние не имеют пероксидазоположительных гранул.

Выделяют два типа моноядерных лейкоцитов:

Моноциты, которые фагоцитируют бактерии, детриты и другие вредные элементы;

Лимфоциты, вырабатывающие антитела (В-лимфоциты) и атакующие агрессивные вещества (Т-лимфоциты).

Моноциты (Мц) - самые крупные из всех форменных элементов крови, размером около 17-20 мкм. Крупное почкообразное эксцентричное ядро с 2-3 ядрышками располагается в объемной цитоплазме клетки. Комплекс Гольджи локализуется вблизи вогнутой поверхности ядра. Клеточные органеллы развиты слабо. Азурофильные гранулы (АГ), т. е. лизосомы, разбросаны внутри цитоплазмы.

Моноциты представляют собой очень подвижные клетки с высокой фагоцитарной активностью. С момента поглощения таких крупных частиц, как целые клетки или крупные части распавшихся клеток, они называются макрофагами. Моноциты регулярно покидают кровоток и проникают в соединительную ткань. Поверхность моноцитов может быть, как гладкой, так и содержащей в зависимости от клеточной активности псевдоподии, филоподии, микроворсинки. Моноциты вовлечены в иммунологические реакции: участвуют в процессинге поглощенных антигенов, активации Т-лимфоцитов, синтезе интерлейкина и выработке интерферона. Продолжительность жизни моноцитов 60-90 дней.

Белые кровяные тельца, помимо моноцитов, существуют в виде двух функционально различных классов, называемых Т- и В-лимфоцитами, которые невозможно различить морфологически, на основе обычных гистологических методов исследования. С морфологической точки зрения различают юные и зрелые лимфоциты. Крупные юные В- и Т-лимфоциты (КЛ) размероммкм, содержат, помимо круглого ядра, несколько клеточных органелл, среди которых есть небольшие азурофильные гранулы (АГ), расположенные в относительно широком цитоплазматическом ободке. Крупные лимфоциты рассматриваются как класс так называемых естественных киллеров (клетки-убийцы).

Зрелые В- и Т-лимфоциты (Л) диаметром 8-9 мкм, имеют массивное шаровидное ядро, окруженное тонким ободком цитоплазмы, в которой можно наблюдать редкие органеллы, включая азурофильные гранулы (АГ). Поверхность лимфоцитов может быть гладкой или усеянной множеством микроворсинок (Мв). Лимфоциты - амебоидные клетки, свободно мигрирующие через эпителий кровеносных капилляров из крови и проникающие в соединительную ткань. В зависимости от типа лимфоцитов продолжительность их жизни варьирует от нескольких дней до нескольких лет (клетки памяти).

ТРОМБОЦИТЫ

Тромбоциты - корпускулярные элементы, являющиеся мельчайшими частицами крови. Тромбоциты - неполные клетки, их жизненный цикл составляет всего до 10 дней. Тромбоциты сосредотачиваются в местах кровотечений и принимают участие в свертывании крови.

Тромбоциты (Т) - веретеновидные или дисковидные двояковыпуклые фрагменты цитоплазмы мегакариоцита диаметром около 3-5 мкм. Тромбоциты имеют немного органелл и два типа гранул: а-гранулы (а), содержащие несколько лизосомальных ферментов, тромбопластин, фибриноген, и плотные гранулы (ПГ), которые имеют весьма конденсированную внутреннюю часть, содержащую аденозиндифосфат, ионы кальция и несколько видов серотонина.

Тромбоциты под электронным микроскопом.

ЛЕЙКОЦИТЫ - БЕЛЫЕ КЛЕТКИ КРОВИ.

Белокровие, лейкемия, лейкоцитоз - симптомы и лечение.

Кровь - единственная подвижная среда живого организма. Она омывает все наши ткани и органы, доставляет им кислород, питательные вещества, ферменты, уносит вредные продукты обмена, защищает нас от болезнетворных микробов. Все эти разнообразные сложнейшие физиологические функции осуществляются с помощью форменных элементов крови.

1 - базофильный лейкоцит

2 - сегментоядерный лейкоцит

3 - палочкоядерный лейкоцит

4 - мелкоклеточный лимфоцит

5 - эозофильный лейкоцит

9 - многоклеточный лимфоцит

Из клеток костного мозга развиваются нейтрофилы, базофилы, эозинофилы.

Нейтрофилы уничтожают микробов, проникших в организм. С помощью ложноножек нейтрофилы захватывают болезнетворные микроорганизмы и переваривают их. Базофилы и эозинофилы также принимают участие в борьбе с микробами.

В лимфатических узлах и в селезенке образуются лимфоциты. Самые крупные из белых кровяных клеток - моноциты развиваются в селезенке.

Основная роль лимфоцитов и моноцитов в крови - ликвидировать остатки погибших белых кровяных телец и микроорганизмов. Эти клетки - своеобразные «санитары», очищающие поле боя.

Подробнее о белокровии (лейкемии, лейкозе)

Белокровие (лейкоз, лейкемия) - опухолевая болезнь органов кроветворения, при котором разрастаются незрелые клетки в кроветворной ткани и других органов. Причинами белокровия могут быть радиационное излучение, влияние лейкозогенных химических веществ, а также внезапные лейкозы, причины которых до конца не выяснены.

Формы белокровия (лейкоза, лейкемии) бывают лейкемические (при значительном количестве патологических лейкоцитов в крови (десятки и сотни тысяч вместо нормальныхтыс) в кубическом миллиметре крови, сублейкемические (до 25 тысяч лейкоцитов в крови), лейкопенические (количество в норме или уменьшено, но в составе есть больные лейкоциты) и алейкемические.

Острый лейкоз возникает и протекает быстро, ярко выражено прекращение кроветворения, и клетки невызревают – в крови присутствуют незрелые клетки – бласты, а количество зрелых лейкоцитов невелико, переходные формы отсутствуют. Острое белокровие характеризуется кровоточивостью, язвами и участками отмирания в некоторых органах, ярковыраженным малокровием. Если не лечить острый лейкоз, то наступает быстрая смерть.

Самая распространенная форма хронического лейкоза – хроническая миелоза (в зависимости от заболевания части кроветворной системы бывают еще лимфолейкозы (лимфаденозы), эритромиелозы, и др), при этом разрастаются элементы кроветворения и в крови наблюдается множество зернистых лейкоцитов. Хронические формы белокровия протекают длительно, увеличиваются лимфоузлы, печень и селезенка. Количество зрелых лейкоцитов ненормально велико, при обострениях наблюдаются незрелые формы – бласты. Нарушаются функции органов и систем организма, возникают опухоли и кровотечения, и при отсутствии лечения наступает смертельный исход.

Итак, белокровие (лейкоз, лейкемия) – это заболевание «белой» крови, т.е. лейкоцитов, они не вызревают и не способны выполнять свои функции по защите организма. Гранулоциты не уничтожают микробов и вирусов, лимфоциты не выводят их из организма (см. анализ крови).

Лечение белокровия (лейкоза, лейкемии)

Основные усилия при лечении лейкоза направлены на прекращение размножения невызревающих лейкоцитов (бластов) и их уничтожение (даже несколько бластов могут вызвать вспышку болезни).

Подавляется размножение незрелых лейкоцитов специальными препаратами, в том числе и гормональными препаратами, снижающими количество лейкоцитов, а так же посредством облучения. При обеих способах страдают и здоровые клетки, и организм тяжело переносит химиотерапию и лучевую терапию. Радикальным способом при повторных ремиссиях является пересадка костного мозга, успех достигается более чем в половине случаев.

Новое лекарство для лечения лейкемии (STI-571 или Glivec или Gleevec – разные названия лекарства) дает надежду многим больным с первой садией хронического миелолейкоза – более чем у 90% возникла ремиссия при лечении в течении 6 месяцев препаратом STI-571 или Glivec. Аномальный белок, продуцируемый измененной хромосомой, приводит к ненормальному росту количества лейкоцитов, а STI-571 или Glivec блокирует сигнал, высвобождающий белок и предотвращает образование и рост раковых клеток. STI-571 или Glivec или Gleevec – новый шаг к лечению раковых заболеваний.

Процедуры и лекарства при лечении белокровия

Для излечения лейкоза нужно избавиться от бластов, и при этом условии нормальные клетки будут родолжать свою деятельность. Лекарства от лейкемии, которые препятствуют делению клеток и носят названия цитостатических препаратов. Облучение – другой способ предотвращения деления клеток. Но оба эти метода неизбирательны – они препятствуют также делению нормальных клеток (побочное действие), и поэтому такое лечение переносится тяжело.

При лечении важно следить за побочными действиями и установить дозировку, при которой лейкозные клетки делятся минимально, а нормальные все еще могут размножаться. Поэтому в процессе лечения непрерывно исследуется моча, кровь, костный мозг и спинно-мозговая жидкость. При достижении нежелательного уровня побочных действий назначается перерыв в лечении.

Побочные явления возникают от недостатка нормальных лейкоцитов и других составляющих крови, организм не может перебороть различные воспалительные инфекции, поэтому назначаются соответствующие противовоспалительные лекарства. Также назначаются средства от рвоты, вызываемой цитостатическими препаратами. При нехватке кровяных телец производят переливание крови.

Цитостатические препараты сравнительно плохо проникают в некоторые области вокруг головного и спинного мозга, и для уничтожения скопившихся там бластов производится люмбальная пункция, в ходе которой лекарство вводится непосредственно в спинно-мозговую жидкость. Пункцию делают несколько раз. В кровь вводится метотрексат или алексан, они также проникают в спинно-мозговую жидкость. Для усвоения метотрексата назначают лейковорин. Возможно также применение облучения головной части в дополнительных дозах.

При интенсивном лечении число лейкоцитов падает, во рту могут образоваться открытые ранки, и поэтому его надо часто полоскать для предотвращения попадания инфекции специальными жидкостями.

После интенсивного этапа лечения в клинике наступает длительный – самочуствие улучшается, только каждый день принимаются таблетки, раз в неделю нужно приехать в клинику и обследоваться. Таким образом проверяется, не остались ли еще в организме бласты, избежавшие действия лечебных препаратов в период интенсивной терапии. При повторном обострении лейкемии нужно более интенсивное лечение для перехода к ремиссии. Применяются другие лекарства, также прибегают к пересадке костного мозга.

О процедурах.

Для исследования костного мозга проводится пункция – отбор костного мозга специальной пункционной иглой – протыкается кость и отбирается проба костного мозга, обычно из верхнего края тазовой кости. Предварительно делается обезболивающий укол.

Люмбальная пункция (поясничный прокол) делается для отбора спинно-мозговой жидкости или введения цитостатических препаратов. Выполняется процедура сидя или лежа, спина должна быть полностью согнута. После обезболивания вводится игла для пункции и отбирается спинно-мозговая жидкость.

Процедура облучения незаметна, человек не чувствует действия облучающих лучей.

Переливание крови – обычно методом капельницы. Обычно переливают то, что недостает. При недостатке эритроцитов перельют концентрат эритроцитов, при недостатке белых клеток перельют концентрат гранулоцитов.

Лекарства для снижения лейкоцитных бластов.

Преднизолон – гормональное средство, принимается обычно в таблетках. Побочное действие – увеличение веса.

Винкристин (онковин). Задерживает клеточное деление. Побочное действие – запоры.

Аспаргиназа (краснитин), вводится капельно, предотвращает рост и размножение бластов.

Тяжело переносится многими.

Даунорубицин и адриамицин вводятся внутривенно.

Циклофосфамид (эндоксан) вводится капельно. Для защиты мочевого пузыря от его воздействия вводится уромитексан.

Антиметаболиты – вещества, похожие на необходимые для роста клетки (пища), но с привнесенными изменениями, от которых погибают бласты. Это цитозар, алексан, пуринотел, метотрексат.

Пересадка костного мозга – процедура, сложная для донора – необходимо много пункций для отбора костного мозга. Рецепиенту сначала цитостатиками и облучением полностью опустошают костный мозг, а затем свежие клетки костного мозга вводятся посредством обычной капельницы.

Клетки крови человека - функции, где образуются и разрушаются

Кровь - важнейшая система в человеческом организме, выполняющая множество различных функций. Кровь является транспортной системой, по которой к органам переносятся жизненно необходимые вещества и удаляются из клеток отработанные вещества, продукты распада и прочие элементы, которые подлежат выведению из организма. В крови также происходит циркуляция веществ и клеток, которые обеспечивают защиту организма в целом.

Кровь состоит из клеток и жидкой части - сыворотки, состоящей из белков, жиров, сахаров и микроэлементов.

В составе крови выделяют три основных вида клеток:

Эритроциты – клетки, транспортирующие кислород к тканям

Эритроцитами называют высокоспециализированные клетки, не имеющие ядра (утрачивается в ходе созревания). Большая часть клеток представлена двояковогнутыми дисками, средний диаметр которых составляет 7 мкм, а периферическая толщина - 2-2,5 мкм. Существуют также шарообразные и куполообразные эритроциты.

Благодаря форме поверхность клетки значительно увеличивается для газовой диффузии. Также подобная форма способствует увеличению пластичности эритроцита, благодаря чему он деформируется и свободно движется по капиллярам.

Эритроциты и лейкоциты человека

У патологических и старых клеток пластичность очень низкая, в связи с чем они задерживаются и разрушаются в капиллярах ретикулярной ткани селезенки.

Эритроцитарная мембрана и безъядерность клеток обеспечивают основную функцию эритроцитов - транспортировку кислорода и углекислого газа. Мембрана является абсолютно непроницаемой для катионов (кроме калия) и высокопроницаемой для анионов. Мембрана на 50% состоит из белков, определяющих принадлежность крови к группе и обеспечивающих отрицательный заряд.

Эритроциты различны между собой по:

Видео: Эритроциты

Эритроциты – самые многочисленные клетки в крови человека

Эритроциты классифицируют по степени зрелости на группы, имеющие свои отличительные признаки

В периферической крови встречаются как зрелые, так и молодые и старые клетки. Молодые эритроциты, в которых имеются остатки ядер, называются ретикулоцитами.

Количество молодых эритроцитов в крови не должно превышать 1% от всей массы красных клеток. Увеличение содержания ретикулоцитов указывает на усиленный эритропоэз.

Процесс образования эритроцитов называется эритропоэзом.

  • Костном мозге костей черепа;
  • Таза;
  • Туловища;
  • Грудины и позвоночных дисках;
  • До 30 лет эритропоэз происходит также в плечевых и бедренных костях.

Ежедневно костный мозг образует более 200 млн. новых клеток.

После полного созревания, клетки проникают в кровеносную систему сквозь капиллярные стенки. Продолжительность жизни эритроцитов составляет от 60 до 120 дней. Менее 20% гемолиза эритроцитов происходит внутри сосудов, остальные разрушаются в печени и селезенке.

Функции эритроцитов

  • Выполняют транспортную функцию. Кроме кислорода и углекислого газа клетки переносят липиды, белки и аминокислоты;
  • Способствуют выведению токсинов из организма, а также ядов, которые образуются в результате метаболических и жизненных процессов микроорганизмов;
  • Активно участвуют в поддержании баланса кислоты и щелочи;
  • Участвуют в процессе свертываемости крови.

Гемоглобин

В состав эритроцита входит сложный железосодержащий белок гемоглобин, основной функцией которого является перенос кислорода между тканями и легкими, а так же частичная транспортировка углекислого газа.

В состав гемоглобина входит:

  • Крупная молекула белка - глобин;
  • Встроенная в глобин небелковая структура - гема. В сердцевине гемы расположен ион железа.

В легких железо связывается с кислородом, и именно эта связь способствует приобретению кровью характерного оттенка.

Группы крови и резус-фактор

На поверхности красных кровяных телец располагаются антигены, которых существует насколько разновидностей. Именно поэтому кровь одного человека может отличаться от крови другого. Антигены формируют резус-фактор и групповую принадлежность крови.

Наличие/отсутствие на поверхности эритроцита антигена Rh определяет резус-фактор (при наличии Rh резус положительный, при отсутствии - отрицательный).

Определение резус-фактора и групповой принадлежности крови человека имеет большое значение при переливании донорской крови. Некоторые антигены несовместимы друг с другом, вызывая разрушение клеток крови, что может привести к гибели пациента. Очень важно переливать кровь от донора, группа крови и резус-фактор которого совпадают с показателями реципиента.

Лейкоциты - клетки крови, выполняющие функцию фагоцитоза

Лейкоцитами, или белыми кровяными тельцами, называют клетки крови, выполняющие защитную функцию. Лейкоциты содержат ферменты, разрушающие инородные белки. Клетки способны обнаружить вредоносных агентов, «атаковать» их и уничтожить (фагоцитировать). Кроме ликвидации вредных микрочастиц лейкоциты принимают активное участие в очищении крови от продуктов распада и метаболизма.

Благодаря антителам, которые вырабатываются лейкоцитами, организм человека становится устойчивым к некоторым заболеваниям.

Лейкоциты оказывают благотворное влияние на:

  • Метаболические процессы;
  • Обеспечение органов и тканей нужными гормонами;
  • Ферментами и другими необходимыми веществами.

Лейкоциты разделяют на 2 группы: зернистые (гранулоциты) и незернистые (агранулоциты).

К зернистым лейкоцитам относят:

В группу незернистых лейкоцитов входят:

Нейтрофилы

Самая большая по численности группа лейкоцитов, составляющая почти 70% от их общего количества. Свое название данный вид лейкоцита получил из-за способности зернистости клетки окрашиваться красками, имеющими нейтральную реакцию.

Нейтрофилы классифицируют по форме ядра на:

  • Юные, не имеющие ядра;
  • Палочкоядерные, ядро которых представлено палочкой;
  • Сегментоядерные, ядро которых представляет собой соединенные между собой 4-5 сегментов.

Нейтрофилы

При подсчете нейтрофилов в анализе крови допустимо наличие не более 1% юных, не более 5% палочкоядерных и не более 70% сегментоядерных клеток.

Главной функцией нейтрофильных лейкоцитов является защитная, которая реализуется благодаря фагоцитозу - процессу обнаружения, захвата и уничтожения бактерий или вирусов.

1 нейтрофил способен «обезвредить» до 7 микробов.

Нейтрофил также принимает участие в развитии воспаления.

Базофилы

Самый малочисленный подвид лейкоцитов, объем которого составляет менее 1% от числа всех клеток. Базофильными лейкоциты названы из-за способности зернистости клетки окрашиваться только щелочными красителями (basic).

Функции базофильных лейкоцитов обусловлены присутствием в них активных биологических веществ. Базофилы продуцируют гепарин, который препятствует свертываемости крови в месте воспалительной реакции и гистамин, который расширяет капилляры, что приводит к скорейшему рассасыванию и заживлению. Базофилы также способствуют развитию аллергических реакций.

Эозинофилы

Подвид лейкоцитов, который получил свое название из-за того, что его гранулы окрашиваются кислыми красителями, основным из которых является эозин.

Количество эозинофилов составляет 1-5% от всей численности лейкоцитов.

Клетки обладают способностью фагоцитоза, но основной их функцией является обезвреживание и ликвидация белковых токсинов, инородных белков.

Также эозинофилы участвуют в саморегуляции систем организма, продуцируют обезвреживающие воспалительные медиаторы, участвуют в очищении крови.

Моноциты

Подвид лейкоцитов, не имеющий зернистости. Моноциты - крупные клетки, напоминающей треугольник формы. Моноциты имеют большое ядро различных форм.

Образование моноцита происходит в костном мозгу. В процессе созревания клетка проходит несколько стадий созревания и деления.

Сразу после того, как молодой моноцит созревает, он выходит в кровеносную систему, где живет 2-5 суток. После этого часть клеток гибнет, а часть уходит «дозревать» до стадии макрофагов - самых больших кровяных клеток, продолжительность жизни которых составляет до 3 месяцев.

Моноциты выполняют следующие функции:

  • Продуцируют ферменты и молекулы, которые способствуют развитию воспаления;
  • Участвуют в фагоцитозе;
  • Способствуют регенерации тканей;
  • Помогает в восстановлении нервных волокон;
  • Способствует росту тканей кости.

Моноциты

Макрофаги фагоцитируют вредоносные агенты, находящиеся в тканях и подавляют процесс размножения патогенных микроорганизмов.

Лимфоциты

Центральное звено системы защиты, которое отвечает за формирование специфического иммунного ответа и обеспечивает защиту от всего инородного в организме.

Образование, созревание и деление клеток происходит в костном мозге, откуда они по кровеносной системе отправляются в тимус, лимфоузлы и селезенку для полного созревания. В зависимости от того, где происходит полное созревание, выделяют Т-лимфоциты (созревшие в тимусе) и В-лимфоциты (созревшие в селезенке или в лимфатических узлах).

Основной функцией Т-лимфоцитов является защита организма, путем участия клеток в иммунных реакциях. Т-лимфоциты фагоцитируют патогенные агенты, уничтожают вирусы. Реакция, которую осуществляют данные клетки, носит название «неспецифическая резистентность».

В-лимфоцитами называются клетки, способные вырабатывать антитела - особые белковые соединения, которые препятствуют размножению антигенов и нейтрализуют токсины, выделяемые ими в процессе жизнедеятельности. На каждый из видов патогенного микроорганизма В-лимфоциты вырабатывают индивидуальные антитела, ликвидирующие конкретный вид.

Т-лимфоциты фагоцитируют, преимущественно, вирусы, В-лимфоциты уничтожают бактерии.

Какие антитела образуют лимфоциты?

В-лимфоциты вырабатывают антитела, которые содержатся в мембранах клеток и в сывороточной части крови. При развитии инфекции антитела начинают стремительно поступать в кровоток, где распознают болезнетворные агенты и «информируют» об этом иммунную систему.

Выделяют следующие виды антител:

  • Иммуноглобулин М - составляет до 10% от общего количества антител в организме. Являются наиболее крупными антителами и образуются сразу после внедрения антигена в организм;
  • Иммуноглобулин G - основная группа антител, которая играет ведущую роль в защите человеческого организма и формирует иммунитет у плода. Клетки являются самыми мелкими среди антител и способны преодолевать плацентарный барьер. Вместе с этим иммуноглобулином плоду передается иммунитет от многих патологий от матери ее будущему ребенку;
  • Иммуноглобулин А - защищают организм от влияния антигенов, попадающих в организм из внешней среды. Синтез иммуноглобулина А производится В-лимфоцитами, но большим количеством содержатся не в крови, а на слизистых оболочках, грудном молоке, слюне, слезах, моче, желчи и секретах бронхов и желудка;
  • Иммуноглобулин Е - антитела, выделяемые при аллергических реакциях.

Лимфоциты и иммунитет

После встречи микроба с В-лимфоцитом, последний способен формировать в организме «клетки памяти», что обуславливает устойчивость к патологиям, возбудителем которых является данная бактерия. Для появления клеток памяти, медициной разработаны вакцины, направленные на формирование иммунитета к особо опасным заболеваниям.

Где разрушаются лейкоциты?

Процесс разрушения лейкоцитов до конца не изучен. На сегодняшний день доказано, что из всех механизмов деструкции клеток в разрушении белых кровяных телец принимают участие селезенка и легкие.

Тромбоциты - клетки, защищающие организм от фатальной кровопотери

Тромбоциты - форменные кровяные элементы, которые участвуют в обеспечении гемостаза. Представлены мелкими клетками двояковыпуклой формы, не имеющие ядра. Диаметр тромбоцита варьируется в пределах 2-10 мкм.

Продуцируются тромбоциты красным костным мозгом, где проходят 6 циклов созревания, после чего выходят в кровоток и находятся там от 5 до 12 дней. Разрушение тромбоцитов происходит в печени, селезенке и костном мозге.

Находясь в кровотоке, тромбоциты имеют форму диска, но при активации тромбоцит приобретает форму сферы, на которой образуются псевдоподии - специальные выросты, с помощью которых тромбоциты соединяются между собой и прилипают к поврежденной поверхности сосуда.

В человеческом организме тромбоциты выполняют 3 основные функции:

  • Создают «пробки» на поверхности поврежденного кровеносного сосуда, способствуя остановке кровотечения (первичный тромб);
  • Участвуют в свертывании крови, что также важно для остановки кровотечения;
  • Тромбоциты предоставляют питание клеткам сосудов.

Тромбоциты классифицируют на.

Общий клинический анализ крови – это самый распространенный диагностический тест, который назначает пациенту врач. За последние десятилетия технология этого рутинного, но очень информативного исследования проделала колоссальный рывок – она стала автоматической. В помощь врачу лабораторной диагностики, орудием труда которого был обычный световой микроскоп, пришли высокотехнологичные автоматические гематологические анализаторы.

В этом посте мы расскажем, что именно происходит внутри «умной машины», видящей нашу кровь насквозь, и почему ей следует верить. Мы будем рассматривать физику процессов на примере гематологического анализатора UniCel DxH800 мирового бренда Beckman Coulter. Именно на этом оборудовании выполняются исследования, заказанные в сервисе лабораторной диагностики LAB4U.RU . Но для того, чтобы понять технологию автоматического анализа крови, мы разберемся с тем, что видели врачи-лаборанты под микроскопом и как они интерпретировали эту информацию.

Параметры анализа крови

Итак, в крови содержится три вида клеток:
  • лейкоциты, обеспечивающие иммунную защиту;
  • тромбоциты, отвечающие за свертываемость крови;
  • эритроциты, осуществляющие транспорт кислорода и углекислого газа.
Эти клетки находятся в крови в совершенно определенных количествах. Их обуславливают возраст человека и состояние его здоровья. В зависимости от условий, в которых находится организм, костный мозг производит столько клеток, сколько их требуется организму. Поэтому, зная количество определенного вида клеток крови и их форму, размер и другие качественные характеристики, можно уверенно судить о состоянии и текущих потребностях организма. Именно эти ключевые параметры – количество клеток каждого вида, их внешний вид и качественные характеристики – составляют общий клинический анализ крови.


При проведении общего анализа крови производят подсчет количества эритроцитов, тромбоцитов и лейкоцитов. С лейкоцитами сложнее: их несколько видов, и каждый вид выполняет свою функцию. Выделяют 5 разных видов лейкоцитов:
  1. нейтрофилы, нейтрализующие в основном бактерии;
  2. эозинофилы, нейтрализующие иммунные комплексы антиген-антитело;
  3. базофилы, участвующие в аллергических реакциях;
  4. моноциты – главные макрофаги и утилизаторы;
  5. лимфоциты, обеспечивающие общий и местный иммунитет.
В свою очередь, нейтрофилы по степени зрелости разделяют на:
  • палочкоядерные,
  • сегментоядерные,
  • миелоциты,
  • метамиелоциты.
Процент каждого вида лейкоцитов в их общем объеме называют лейкоцитарной формулой, которая имеет важное диагностическое значение. Например, чем более выражен бактериальный воспалительный процесс, тем больше нейтрофилов в лейкоцитарной формуле. Наличие нейтрофилов разной степени зрелости говорит о тяжести бактериальной инфекции. Чем острее процесс, тем больше в крови палочкоядерных нейтрофилов. Появление в крови метамиелоцитов и миелоцитов говорит о крайне тяжелой бактериальной инфекции. Для вирусных заболеваний характерно увеличение лимфоцитов, при аллергических реакциях – увеличение эозинофиллов.

Помимо количественных показателей, крайне важна морфология клеток. Изменение их обычной формы и размеров также свидетельствует о наличии определенных патологических процессов в организме.

Важный и наиболее известный показатель – количество в крови гемоглобина – сложного белка, обеспечивающего поступление кислорода к тканям и выведение углекислого газа. Концентрация гемоглобина в крови – главный показатель при диагностике анемий.

Еще один из важных параметров – это скорость оседания эритроцитов (СОЭ). При воспалительных процессах у эритроцитов появляется свойство слипаться друг с другом, образуя небольшие сгустки. Обладая большей массой, слипшиеся эритроциты под действием силы тяжести оседают быстрее, чем одиночные клетки. Изменение скорости их оседания в мм/ч является простым индикатором воспалительных процессов в организме.

Как было: скарификатор, пробирки и микроскоп

Забор крови


Вспомним, как раньше сдавали кровь: болезненный прокол подушечки скарификатором, бесконечные стеклянные трубочки, в которые собирали драгоценные капли выжатой крови. Как лаборант одним стёклышком проводил по другому, где находилась капля крови, царапая на стекле номер простым карандашом. И бесконечные пробирки с разными жидкостями. Сейчас это уже кажется какой-то алхимией.

Кровь брали именно из безымянного пальца, на что были вполне серьезные причины: анатомия этого пальца такова, что его травмирование дает минимальную угрозу сепсиса в случае инфицирования ранки. Забор крови из вены считался куда более опасным. Поэтому анализ венозной крови не был рутинным, а назначался по необходимости, и в основном в стационарах.

Стоит отметить, что уже на этапе забора начинались значительные погрешности. Например, разная толщина кожи дает разную глубину укола, вместе с кровью в пробирку попадала тканевая жидкость – отсюда изменение концентрации крови, кроме того, при давлении на палец клетки крови могли разрушаться.

Помните ряд пробирок, куда помещали собранную из пальца кровь? Для подсчета разных клеток действительно нужны были разные пробирки. Для эритроцитов – с физраствором, для лейкоцитов – с раствором уксусной кислоты, где эритроциты растворялись, для определения гемоглобина – с раствором соляной кислоты. Отдельный капилляр был для определения СОЭ. И на последнем этапе делался мазок на стекле для последующего подсчета лейкоцитарной формулы.

Анализ крови под микроскопом

Для подсчета клеток под микроскопом в лабораторной практике использовался специальный оптический прибор, предложенный еще в ХIX веке русским врачом, именем которого этот прибор и был назван – камера Горяева. Она позволяла определить количество клеток в заданном микрообъеме жидкости и представляла собой толстое предметное стекло с прямоугольным углублением (камерой). На нее была нанесена микроскопическая сетка. Сверху камера Горяева накрывалась тонким покровным стеклом.

Эта сетка состояла из 225 больших квадратов, 25 из которых были разделены на 16 малых квадратов. Эритроциты считались в маленьких исчерченных квадратах, расположенных по диагонали камеры Горяева. Причем существовало определенное правило подсчета клеток, которые лежат на границе квадрата. Расчет числа эритроцитов в литре крови осуществлялся по формуле, исходя из разведения крови и количества квадратов в сетке. После математических сокращений достаточно было посчитанное количество клеток в камере умножить на 10 в 12-й степени и внести в бланк анализа.

Лейкоциты считали здесь же, но использовали уже большие квадраты сетки, поскольку лейкоциты в тысячу раз больше, чем эритроциты. После подсчета лейкоцитов их количество умножали на 10 в 9-й степени и вносили в бланк. У опытного лаборанта подсчет клеток занимал в среднем 3-5 мин.

Методы подсчета тромбоцитов в камере Горяева были очень трудоемки из-за малой величины этого вида клеток. Оценивать их количество приходилось только на основе окрашенного мазка крови, и сам процесс был тоже весьма трудоемким. Поэтому, как правило, количество тромбоцитов рассчитывали только по специальному запросу врача.

Лейкоцитарную формулу , то есть процентный состав лейкоцитов каждого вида в общем их количестве мог определять только врач – по результатам изучения мазков крови на стеклах.


Визуально определяя находящиеся в поле зрения различные виды лейкоцитов по форме их ядра, врач считал клетки каждого вида и общее их количество. Насчитав 100 в совокупности, он получал требуемое процентное соотношение каждого вида клеток. Для упрощения подсчета использовались специальные счетчики с отдельными клавишами для каждого вида клеток.

Примечательно, что такой важный параметр, как гемоглобин, определялся лаборантом визуально (!) по цвету гемолизированной крови в пробирке с соляной кислотой. Метод был основан на превращении гемоглобина в солянокислый гематин коричневого цвета, интенсивность окраски которого пропорциональна содержанию гемоглобина. Полученный раствор солянокислого гематина разводили водой до цвета стандарта, соответствующего известной концентрации гемоглобина. В общем, прошлый век

Как стало: вакуумные контейнеры и гематологические анализаторы

Начнем с того, что сейчас полностью поменялась технология забора крови. На смену скарификаторам и стеклянным капиллярам с пробирками пришли вакуумные контейнеры. Использующиеся теперь системы забора крови малотравматичны, процесс полностью унифицирован, что значительно сократило процент погрешностей на этом этапе. Вакуумные пробирки, содержащие консерванты и антикоагулянты, позволяют сохранять и транспортировать кровь от точки забора до лаборатории. Именно благодаря появлению новой технологии стало возможным сдавать анализы максимально удобно – в любое время, в любом месте.


На первый взгляд, автоматизировать такой сложный процесс, как идентификация клеток крови и их подсчет, кажется невозможно. Но, как обычно, все гениальное просто. В основе автоматического анализа крови лежат фундаментальные физические законы. Технология автоматического подсчета клеток была запатентована в далеком 1953 году американцами Джозефом и Уолессом Культерами. Именно их имя стоит в название мирового бренда гематологического оборудования Bеckman&Coulter.

Подсчет клеток

Апертурно-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете количества и оценке характера импульсов, возникающих при прохождении клетки через отверстие малого диаметра (апертуру), по обе стороны которого расположены два электрода. При прохождении клетки через канал, заполненный электролитом, возрастает сопротивление электрическому току. Каждое прохождение клетки сопровождается появлением электрического импульса. Чтобы выяснить, какова концентрация клеток, необходимо пропустить через канал определенный объем пробы и сосчитать количество появившихся импульсов. Единственное ограничение – концентрация пробы должна обеспечивать прохождение через апертуру только одной клетки в каждый момент времени.


За прошедшие более 60 лет технология автоматического гематологического анализа прошла большой путь. Вначале это были простые счетчики клеток, определяющие 8-10 параметров: количество эритроцитов (RBC), количество лейкоцитов (WBC), гемоглобин (Hb) и несколько расчетных. Такими были анализаторы первого класса .

Второй класс анализаторов определял уже до 20 различных параметров крови. Они существенно выше по уровню в дифференциации лейкоцитов и способны выделять популяции гранулоцитов (эозинофилы + нейтрофилы + базофилы), лимфоцитов и интегральной популяции средних клеток, куда относились моноциты, эозинофилы, базофилы и плазматические клетки. Такая дифференциация лейкоцитов успешно использовалась при обследовании практически здоровых людей.

Самыми технологичными и инновационными анализаторами на сегодняшний день являются машины третьего класса , определяющие до сотни различных параметров, проводящие развернутое дифференцирование клеток, в том числе по степени зрелости, анализирующие их морфологию и сигнализирующие врачу-лаборанту об обнаружении патологии. Машины третьего класса, как правило, снабжены еще и автоматическими системами приготовления мазков (включая их окраску) и вывода изображения на экран монитора. К таким передовым гематологическим системам относятся оборудование BeckmanCoulter, в частности система клеточного анализа UniCel DxH 800 .


Современные аппараты BeckmanCoulter используют метод многопараметрической проточной цитометрии на основе запатентованной технологии VCS (Volume-Conductivity-Scatter). VCS-технология подразумевает оценку объема клетки, ее электропроводимость и светорассеяние.

Первый параметр – объем клетки – измеряется с использованием принципа Культера на основе оценки сопротивления при прохождении клеткой апертуры при постоянном токе. Величину и плотность клеточного ядра, а также ее внутренний состав определяют с помощью измерения ее электропроводности в переменном токе высокой частоты. Рассеяние лазерного света под разными углами позволяет получить информацию о структуре клеточной поверхности, гранулярности цитоплазмы и морфологии ядра клетки.

Полученные по трем каналам данные комбинируются и анализируются. В результате клетки распределяются по кластерам, включая разделение по степени зрелости эритроцитов и лейкоцитов (нейтрофилов). На основе полученных измерений этих трех размерностей определяется множество гематологических параметров – до 30 в диагностических целях, более 20 в исследовательских целях и более ста специфичных расчетных параметров для узкоспециализированных цитологических исследований. Данные визуализируются в 2D- и 3D-форматах. Врач-лаборант, работающий с гематологическим анализатором BackmanCoulter, видит результаты анализа на мониторе примерно в таком виде:


А далее принимает решение – надо ли их верифицировать или нет.

Стоит ли говорить, что информативность и точность современного автоматического анализа во много раз выше мануального? Производительность машин подобного класса – порядка сотни образцов в час при анализе тысяч клеток в образце. Вспомним, что при микроскопии мазка врачом анализировалось только 100 клеток!

Однако несмотря на эти впечатляющие результаты, именно микроскопия до сих пор пока остается «золотым стандартом» диагностики. В частности, при выявлении аппаратом патологической морфологии клеток образец анализируется под микроскопом вручную. При обследовании больных с гематологическими заболеваниями микроскопия окрашенного мазка крови проводится только вручную опытным врачом-гематологом. Именно так, вручную, дополнительно к автоматическому подсчету клеток, выполняется оценка лейкоцитарной формулы во всех детских анализах крови по заказам, сделанным с помощью лабораторного онлайн-сервиса LAB4U.RU.

Вместо резюме

Технологии автоматизированного гематологического анализа продолжают активно развиваться. По существу они уже заменили микроскопию при выполнении рутинных профилактических анализов, оставив ее для особо значимых ситуаций. Мы имеем в виду детские анализы, анализы людей, имеющих подтвержденные заболевания, особенно гематологические. Однако в обозримом будущем и на этом участке лабораторной диагностики врачи получат аппараты, способные самостоятельно выполнять морфологический анализ клеток с использованием нейронных сетей. Снизив нагрузку на врачей, они в то же время повысят требования к их квалификации, поскольку в зоне принятия решений человеком останутся только нетипичные и патологические состояния клеток.

Количество информативных параметров анализа крови, увеличившиеся многократно, поднимает требования к профессиональной квалификации и врача-клинициста, которому необходимо анализировать сочетания значений массы параметров в диагностических целях. На помощь врачам этого фронта идут экспертные системы, которые, используя данные анализатора, предоставляют рекомендации по дальнейшему обследованию пациента и выдают возможный диагноз. Такие системы уже представлены на лабораторном рынке. Но это уже тема отдельной статьи.

Теги:

  • медицина
  • лаборатория
  • технологии
  • it в медицине
Добавить метки

Организм человека - это настолько сложный и слаженный "механизм", что большинство из нас даже представить не может! Эта серия фотографий, сделанных с помощью электронной микроскопии, поможет вам чуть больше узнать о своём организме и увидеть то, что мы в своей обычной жизни увидеть не можем. Добро пожаловать в органы!

Альвеолы лёгких с двумя красными кровяными тельцами (эритроцитами). (фото CMEABG-UCBL / Phanie)


30-кратное увеличение основания ногтя.


Радужная оболочка глаза и прилегающие структуры. В правом нижнем углу - край зрачка (синим цветом). (фото STEVE GSCHMEISSNER/SCIENCE PHOTO LIBRARY)


Красные кровяные тельца вываливаются (если можно так сказать) из разорванного капилляра.


Нервное окончание. Это нервное окончание было вскрыто, чтобы увидеть везикулы (оранжевого и синего цветов), содержащие химические вещества, которые используются для передачи сигналов в нервной системе. (фото TINA CARVALHO)


Свернувшаяся кровь.


Красные кровяные тельца в артерии.


Лёгкие человека.


Рецепторы вкуса на языке.


Ресницы, 50-кратное увеличение.


Подушечка пальца, 35-кратное увеличение. (фото Richard Kessel)


Потовая пора, выходящая на поверхность кожи.


Кровеносные сосуды, идущие от соска зрительного нерва (места вступления зрительного нерва в сетчатку).


Яйцеклетка, дающая начало новому организму, является самой большой клеткой в человеческом организме: её вес равен весу 600 сперматозоидов.


Сперматозоиды. Лишь один сперматозоид проникает в яйцеклетку, преодолевая слой небольших клеток, которые её окружают. Как только он в неё попадает, уже никакой другой сперматозоид сделать это уже не сможет.


Эмбрион человека и сперматозоиды. Яйцеклетка была оплодотворена 5 дней назад, при этом некоторые оставшиеся сперматозоиды всё ещё к ней прилипают.


8-дневный эмбрион в начале своего жизненного цикла...