Система крови форменные элементы крови. Зачем нужна кровь человеку и из каких компонентов она состоит. Форма и строение

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками. Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость . Между , межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь. В понятии системы крови по Лангу входят кровь, регулирующий ней рогу моральный аппарат, а также органы, в которых происходит образование и разрушение клеток крови (костный мозг, лимфатические узлы, вилочковая железа, селезенка и печень).

Функции крови

Кровь выполняет следующие функции.

Транспортная функция — заключается в транспорте кровью различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма.

Дыхательная функция — кровь переносит дыхательные газы — кислород (0 2) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь переносит также мигательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО 2 , другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

Гомеостатическая функция — кровь участвует в водно- солевом обмене в организме и обеспечивает поддержание постоянства его внутренней среды — гомеостаза.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма. Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Система крови и её функции

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • регулирующий нейрогуморальный аппарат.

Система крови представляет собой одну из систем жизнеобеспечения организма и выполняет множество функций:

  • транспортная - циркулируя по сосудам, кровь осуществляет транспортную функцию, которая определяет ряд других;
  • дыхательная — связывание и перенос кислорода и углекислого газа;
  • трофическая (питательная) - кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, минеральными веществами, водой;
  • экскреторная (выделительная) - кровь уносит из тканей «шлаки» — конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделения;
  • терморегуляторная — кровь охлаждает энергоемкие органы и согревает органы, теряющие тепло. В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении. Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью;
  • гомеостатическая - кровь поддерживает стабильность ряда констант гомеостаза — , осмотического давления и др.;
  • обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь;
  • защитная - кровь является важнейшим фактором иммунитета, т.е. защиты организма от живых тел и генетически чужеродных веществ. Это определяется фагоцитарной активностью лейкоцитов (клеточный иммунитет) и наличием в крови антител, обезвреживающих микробы и их яды (гуморальный иммунитет);
  • гуморальная регуляция - благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие биологически активные вещества от клеток, где они образуются, к другим клеткам;
  • осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Это жидкость, текущая по венам и артериям человека. Кровь обогащает мышцы и органы человека кислородом, который необходим для жизнедеятельности организма. Кровь способна вывести все ненужные вещества и отходы из организма. Благодаря сокращениям сердца, кровь постоянно перекачивается. У взрослого человека в среднем, около 6 литров крови.

Сама же кровь состоит из плазмы. Это жидкость, в состав которой входят красные и белые кровяные шарики. Плазма представляет собой жидкое желтоватое вещество, в котором растворяются необходимые для жизнеобеспечения вещества.

В красных шариках содержится гемоглобин, Это вещество, содержащее железо. Их задача, переносить кислород от легких к другим частям тела. Белые же шарики, количество которых значительно меньше числа красных, борются с микробами, которые проникают внутрь организма. Они, так называемые - защитники организма.

Cостав крови

Около 60% крови составляет плазма - жидкая ее часть. Эритроциты, лейкоциты и тромбоциты - составляют 40%.

В густой вязкой жидкости (плазма крови) содержатся необходимые для жизнедеятельности организма вещества. Данные полезные вещества, перемещающиеся к органам и тканям, обеспечивают химическую реакцию организма и деятельность всей нервной системы. Гормоны, производимые железами внутренней секреции, поступают в плазму и разносятся кровотоком. В плазме также содержатся ферменты - антитела, защищающие организм от инфекции.

Эритроциты (красные кровяные тельца) - основная масса элементов крови, которая определяет ее цвет.

Конструкция эритроцита смахивает на тончайшую губку, поры которой забиты гемоглобином. Каждый эритроцит несет 267 миллионов молекул данного вещества. Основное свойство гемоглобина: свободно заглатывать кислород и углекислоту, вступая с ними в соединение, и при необходимости, освобождается от них.

Эритроцит

Своеобразная безъядерная клетка. На стадии формирования он теряет ядро и созревает. Это позволяет нести большее количество гемоглобина. Размеры эритроцита очень малы: диаметр около 8 микрометров, а толщина и вовсе 3 микрометра. А вот их количество действительно огромно. Всего в крови организма содержится 26 триллионов эритроцитов. И этого достаточно для постоянного оснащения организма кислородом.

Лейкоциты

Клетки крови, не имеющие цвета. В диаметре достигают 23 микрометров, что значительно превосходит размеры эритроцита. На один кубический миллиметр количество этих клеток достигает до 7 тысяч. Кроветворные ткани производит лейкоциты, превышая нужды организма более чем в 60 раз.

Защита организма от различного рода инфекций - вот основная задача лейкоцитов.

Тромбоциты

Кровяные пластинки, бегущие около стенок кровеносных сосудов. Они выступают как бы в виде бессменных ремонтных бригад, которые следят за исправностью стенок сосуда. В каждом кубическом миллиметре находятся более 500 тысяч таких ремонтников. А всего в организме больше полутора триллионов.

Срок существования определенной группы клеток крови строго ограничен. К примеру, около 100 дней живут эритроциты. Жизнь лейкоцитов отмеряется от нескольких дней до нескольких десятилетий. Меньше всего живут тромбоциты. Они существуют лишь 4-7 дней.

Вместе с кровотоком все эти элементы свободно передвигаются по кровеносной системе. Там, где организм держит замеренный поток крови про запас - это в печени, селезенке и подкожной ткани, данные элементы могут задержаться здесь подольше.

У каждого из этих путешественников есть свой определенный старт и финиш. Эти две остановки им не миновать ни при любых обстоятельствах. Начало их пути и там, где клетка вымирает.

Известно, что большее число элементов крови начинают свой путь, оставляя костный мозг, некоторые начинают с селезенки или лимфатических узлах. Заканчивают они свой путь в печени, некоторые в костном мозге или селезенке.

В течение секунды рождаются около 10 миллионов появившихся на свет эритроцитов, такое же количество выпадает на погибшие клетки. Это означает, что строительные работы в кровеносной системе нашего организма не приостанавливаются ни на секунду.

За сутки количество таких эритроцитов может достигать до 200 миллиардов. При этом вещества, входящие в состав отмирающих клеток, перерабатываются и вновь эксплуатируются при воссоздании новых клеток.

Группы крови

Переливая кровь от животного к высшему существу, от человека к человеку, ученные наблюдали такую закономерность, что очень часто пациент, которому переливают кровь, умирает или появляются тяжелейшие осложнения.

С открытием венского врача К. Ландштейнера групп крови стало ясно, почему в некоторых случаях переливание крови проходит успешно, а в других приводит к печальным последствиям. Венский врач впервые обнаружил, что плазма, некоторых людей способна склеивать эритроциты других людей. Такое явление получило название изогемагглютинация.

В ее основе наблюдается присутствие антигенов, названных латинскими большими буквами A B, а в плазме (природных антител) именуется a b. Агглютинация эритроцитов наблюдается только в том случае, когда встречаются A и а, B и b.

Известно, что природные антитела имеют два центра соединения, потому одна молекула агглютинина может создать мостик между двумя эритроцитами. В то время как отдельный эритроцит, с помощью агглютининов, может склеиваться с соседним эритроцитом, благодаря чему образуется конгломерат эритроцитов.

Не возможно одинаковое число аглютиногенов и агглютининов в крови одного человека, так как в этом случае было бы массовое склеивание эритроцитов. Это никак не совместимо с жизнью. Возможны только 4 группы крови, то есть четыре соединения, где не пересекаются одинаковые агглютинины и агглютиногены: I - ab, II - AB, III - Ba, IV-AB.

Для того чтобы сделать переливание крови донора к пациенту, необходимо пользоваться этим правилом: среда пациента должна быть пригодна для существования эритроцитов донора (человек, отдающий кровь). Эта среда называется - плазма. То есть, для того, чтобы проверить совместимость крови донора и пациента, необходимо кровь с сывороткой совместить.

Первая группа крови совместима со всеми группами крови. Поэтому человек, с такой группой крови является универсальным донором. При этом человек, с самой редко группой крови (четвертая), не может быть донором. Его называют универсальным реципиентом.

В повседневной же практике, врачи используют другое правило: переливание крови только по совместимости групп крови. В других же случая, если нет данной группы крови, можно производить трансфузию другой группы крови в очень маленьком количестве, чтобы кровь смогла прижиться в организме пациента.

Резус-фактор

Известные врачи К. Ландштейнер и А. Виннер при эксперименте над обезьянами, обнаружили у нее антиген, который на сегодняшний день несет название - резус-фактор. При дальнейших исследованиях оказалось, что такой антиген находится у большинства людей белой расы, то есть более 85%.

Такие люди отмечаются резус - положительным (Rh+). Почти 15% народа носят резус - отрицательный (Rh-).

Система резус не имеет одноименных агглютининов, но они могут появиться в том случае, если человеку с отрицательным фактором перелить кровь резус - положительную.

Резус-фактор определяется по наследству. Если женщина с положительным резус-фактором, родит от мужчины с отрицательным резусом, то ребенок на 90% получит именно отцовский резус-фактор. В таком случае, несовместимость резуса матери и плода 100%.

Такая несовместимость может привести к осложнениям в беременности. При этом страдает не только мать, но и плод. В таких случаях не редки преждевременные роды и выкидыши.

Заболеваемость по группам крови

Люди, имеющие разные группы крови подвержены определенным заболеваниям. К примеру, человек с первой группой крови подвержен язвенным заболеваниям желудка и двенадцатиперстной кишки, гастрит, болезни желчи.

Очень часто и сложнее переносят сахарный диабет, индивиды с второй группой крови. У таких людей свертываемость крови значительно повышена, что приводит к инфарктам миокарда и инсультам. Если следовать статистике, у таких людей наблюдаются раковые заболевания половых органов и раковые заболевания желудка.

Лица с третьей группой крови больше остальных страдают заболеванием рака толстой кишки. Притом, люди с первой и четвертой группой крови тяжело переносят натуральную оспу, но менее восприимчивы к возбудителям чумы.

Понятие о системе крови

Российский клиницист Г. Ф. Ланг определил, что в систему крови входят сама кровь и органы кроветворения и кроверазрушения, и конечно аппарат регуляции.

Кровь обладает некоторыми особенностями:
-за пределами сосудистого русла, образуется все основные части крови;
-межклеточное вещество ткани - жидкое;
-большая часть крови постоянно находится в движении.

Внутренняя часть организма состоит из тканевой жидкости, лимфы и крови. Их состав теснейшим образом связан между собой. Однако именно тканевая жидкость является истиной внутренней средой человеческого организма, потому что только она контактирует со всеми клетками организма.

Соприкасаясь с эндокардом сосудов, кровь, обеспечивая их жизненный процесс, окольным путем вмешивается во все органы и ткани сквозь тканевую жидкость.

Вода является составной и основной долей тканевой жидкости. В каждом человеческом организме вода составляет более 70% от всей массы тела.

В организме - в воде, находятся растворенные продукты обмена, гормоны, газы, которые постоянно транспортируют между кровью и тканевой жидкостью.

Из этого следует, что внутренняя среда организма представляет собой некий транспорт, включающий в себя кровообращение и движение по одной цепи: кровь - тканевая жидкость – ткань - тканевая жидкость-лимфа-кровь.

На этом примере четко видно, насколько кровь тесно связана с лимфой и тканевой жидкостью.

Необходимо знать, что плазма крови, внутриклеточная и тканевая жидкость имеют отличительный друг от друга состав. Что и определяет интенсивность водного, электролитного и ионного обмена катионов и анионов между тканевой жидкостью, кровью и клетками.

Кровь (haema, sanguis) - это жидкая ткань, состоящая из плазмы и взвешенных в ней кровяных клеток. Кровь заключена в систему сосудов и находится в состоянии непрерывного движения. Кровь, лимфа, межтканевая жидкость являются 3 внутренними средами организма, которые омывают все клетки, доставляя им необходимые для жизнедеятельности вещества, и уносят конечные продукты обмена. Внутренняя среда организма постоянна по своему составу и физико-химическим свойствам. Постоянство внутренней среды организма называется гомеостаз и является необходимым условием жизни. Гомеостаз регулируется нервной и эндокринной системами. Прекращение движения крови при остановке сердца приводит организм к гибели.

Функции крови:

    Транспортная (дыхательная, питательная, экскреторная)

    Защитная (иммунная, защита от кровопотери)

    Терморегулирующая

    Гуморальная регуляция функций в организме.

КОЛИЧЕСТВО КРОВИ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА КРОВИ

Количество

Кровь составляет 6-8% массы тела. Новорожденные имеют до 15%. В среднем у человека 4,5 - 5 л. Кровь, циркулирующая в сосудах - периферическая , часть крови содержится в депо (печень, селезенка, кожа) - депонированная . Потеря 1/3 крови ведет к гибели организма.

Удельный вес (плотность) крови - 1,050 - 1,060.

Он зависит от количества эритроцитов, гемоглобина и белков в плазме крови. Он увеличивается при сгущении крови (обезвоживание, физические нагрузки). Снижение удельного веса крови наблюдается при притоке жидкости из тканей после кровопотери. У женщин несколько ниже удельный вес крови, т. к. у них меньше количество эритроцитов.

    Вязкость крови 3- 5, превышает вязкость воды в 3 - 5 раз (вязкость воды при температуре + 20°С принята за 1 условную единицу).

    Вязкость плазмы - 1,7-2,2.

Зависит вязкость крови от количества эритроцитов и белков плазмы (в основном

фибриногена) в крови.

От вязкости крови зависят реологические свойства крови - скорость кровотока и

периферическое сопротивление крови в сосудах.

Вязкость имеет разную величину в разных сосудах (самая высокая в венулах и

венах, пониже в артериях, самая низкая в капиллярах и артериолах). Если бы

вязкость была бы одинаковая во всех сосудах, то сердцу пришлось бы развивать

мощность в 30-40 раз больше, чтобы протолкнуть кровь через всю сосудистую

Вязкость увеличивается при сгущении крови, обезвоживании, после физических

нагрузок, при эритремиях, некоторых отравлениях, в венозной крови, при введении

препаратов - коагулянтов (препаратов, усиливающих свертывание крови).

Уменьшается вязкость при анемиях, при притоке жидкости из тканей после кровопотери, при гемофилии, при повышении температуры, в артериальной крови, при введении гепарина и др. противосвертывающих средств.

Реакция среды (рН) - в норме 7,36 - 7,42. Жизнь возможна, если рН от 7 до 7,8.

Состояние, при котором происходит накопление в крови и тканях кислых эквивалентов, называется ацидоз (закисление), рН крови при этом уменьшается (меньше 7,36). Ацидоз может быть:

    газовым - при накоплении СО 2 в крови (СО2+ Н 2 О<-> Н 2 СО 3 - накопление кислых эквивалентов);

    метаболическим (накопление кислых метаболитов, например при диабетической коме накопление ацетоуксусной и гамма-аминомаслной кислот).

Ацидоз приводит к торможению ЦНС, коме и смерти.

Накопление щелочных эквивалентов называется алкалоз (защелачивание) -увеличение рН больше 7,42.

Алкалозтакже может быть газовым , при гипервентиляции легких (если выведено слишком большое количество СО 2), метаболическим - при накоплении щелочных эквивалентов и чрезмерном выведении кислых (неукротимая рвота, поносы, отравления и др.) Алкалоз приводит к перевозбуждению ЦНС, судорогам мышц и смерти.

Поддержание рН достигается за счет буферных систем крови, которые могут связывать гидроксильные (ОН-) и водородные ионы (Н +) и тем удерживать реакцию крови постоянной. Способность буферных систем противодействовать сдвигу рН объясняется тем, что при взаимодействии их с Н+ или ОН-, образуются соединения, обладающие слабо выраженным кислотным или основным характером.

Основные буферные системы организма:

    белковая буферная система (кислые и щелочные белки);

    гемоглобиновая (гемоглобин, оксигемоглобин);

    бикарбонатная (бикарбонаты, угольная кислота);

    фосфатная (первичные и вторичные фосфаты).

Осмотическое давление крови =7,6-8,1 атм.

Создается оно в основном солями натрия и др. минеральными солями, растворенными в крови.

Благодаря осмотическому давлению вода распределяется равномерно между клетками и тканями.

Изотоническими растворами называют растворы, осмотическое давление которых равно осмотическому давлению крови. В изотонических растворах эритроциты не изменяются. Изотоническими растворами являются: физиологический раствор 0,86% NaCl, раствор Рингера, раствор Рингера-Локка и др.

В гипотоническом растворе (осмотическое давление которого ниже, чем в крови) вода из раствора идет в эритроциты, при этом они набухают и разрушаются -осмотический гемолиз. Растворы с более высоким осмотическим давлением называются гипертоническими, эритроциты в них теряют Н 2 О и сморщиваются.

Онкотическое давление крови обусловлено белками плазмы крови (в основном альбуминами) В норме составляет 25-30 мм рт. ст. (в среднем 28) (0,03 - 0,04 атм.). Онкотическое давление - это осмотическое давление белков плазмы крови. Является частью осмотического давления (составляет 0,05 % от

осмотического). Благодаря ему вода удерживается в кровеносных сосудах (сосудистом русле).

При уменьшении количества белков в плазме крови - гипоальбуминемии (при нарушении функции печени, голоде) онкотическое давление снижается, вода выходит из крови через стенку сосудов в ткани, при этом возникают онкотические отеки («голодные» отеки).

СОЭ - скорость оседания эритроцитов, выражается в мм/час. У мужчин СОЭ в норме – 0-10 мм/час , у женщин - 2-15 мм/час (у беременных до 30-45 мм/час).

СОЭ повышается при воспалительных, гнойных, инфекционных и злокачественных заболеваниях, в норме повышена у беременных.

СОСТАВ КРОВИ

    Форменные элементы крови - клетки крови, составляют 40 - 45% крови.

    Плазма крови - жидкое межклеточное вещество крови, составляет 55 - 60 % крови.

Соотношение плазмы и форменных элементов крови называется гематокритный показатель, т.к. он определяется с помощью гематокрита.

При стоянии крови в пробирке форменные элементы оседают на дно, а плазма остается сверху.

ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ

Эритроциты (красные кровяные тельца), лейкоциты (белые кровяные тельца), тромбоциты (красные кровяные пластины).

ЭРИТРОЦИТЫ - это красные кровяные клетки, лишенные ядра, имеющие

форму двояковогнутого диска, размером 7-8 мкм.

Образуются в красном костном мозге, живут 120 дней, разрушаются в селезенке («кладбище эритроцитов»), печени, в макрофагах.

Функции:

1) дыхательная - за счет гемоглобина (перенос О 2 и СО 2);

    питательная - могут транспортировать аминокислоты и др. вещества;

    защитная - способны связывать токсины;

    ферментативная - содержат ферменты. Количество эритроцитов в норме:

    у мужчин в 1 мл - 4,1-4,9 млн.

    у женщин в 1 мл – 3,9 млн.

    у новорожденных в 1 мл - до 6 млн.

    у пожилых в 1 мл - менее 4 млн.

Повышение количества эритроцитов в крови называется эритроцитоз.

Виды эритроцитоза:

1.Физиологический (в норме) - у новорожденных, жителей горных районов, после еды и физической нагрузки.

2.Патологический - при нарушениях кроветворения, эритремиях (гемобластозах - опухолевых заболеваниях крови).

Понижение количества эритроцитов в крови называется эритропения. Она может быть после кровопотери, нарушения образования эритроцитов

(железодефицитная, В!2 дефицитная, фолиеводефицитная анемии) и повышенном разрушении эритроцитов (гемолизе).

ГЕМОГЛОБИН (НЬ) - дыхательный пигмент красного цвета, находящийся в эритроцитах. Синтезируется в красном костном мозге, разрушается в селезенке, печени, в макрофагах.

Гемоглобин состоит из белка - глобина и 4 молекул тема. Гем - небелковая часть НЬ, содержит железо, которое соединяется с О 2 и СО 2. Одна молекула гемоглобина может присоединять 4 молекулы О 2 .

Норма количества НЬ в крови у мужчин до 132-164 г/л, у женщин 115 -145 г/л. Гемоглобин снижается - при анемиях (железодефицитной и гемолитической), после кровопотери, повышается - при сгущении крови, В12 - фолиево - дефицитной анемии и т.д.

Миоглобин - мышечный гемоглобин. Играет большую роль в снабжении О 2 скелетных мышц.

Функции гемоглобина : - дыхательная - перенос кислорода и углекислого газа;

    ферментативная - содержит ферменты;

    буферная - участвует в поддержании рН крови. Соединения гемоглобина :

1.физиологические соединения гемоглобина:

а) Оксигемоглобин: НЬ + О 2 <-> НЬО 2

б) Карбогемоглобин: НЬ + СО 2 <-> НЬСО 2 2. патологические соединения гемоглобина

а) Карбоксигемоглобин - соединение с угарным газом, образуется при отравлениях угарным газом (СО), необратимо, при этом НЬ уже не способен переносить О 2 и СО 2: НЬ + СО -> НЬО

б) Метгемоглобин (Мет НЬ) - соединение с нитратами, соединение необратимо, образуется при отравлении нитратами.

ГЕМОЛИЗ - это разрушение эритроцитов с выходом гемоглобина наружу. Виды гемолиза:

1. Механический гемолиз - может возникнуть при встряхивании пробирки с кровью.

2. Химический гемолиз - кислотами, щелочами и т.д.

З.Осмотический гемолиз - в гипотоническом растворе, осмотическое давление которого ниже, чем в крови. В таких растворах вода из раствора идет в эритроциты, при этом они набухают и разрушаются.

4. Биологический гемолиз - при переливании несовместимой группы крови, при укусах змей (яд обладает гемолитическим эффектом).

Гемолизированная кровь называется «лаковая», по цвету ярко-красная т.к. гемоглобин переходит в кровь. Гемолизированная кровь непригодна для анализов.

ЛЕЙКОЦИТЫ - это бесцветные (белые) клетки крови, содержание ядро ипротоплазму.Образуются в красном костном мозге, живут 7-12 дней, разрушаются в селезенке, печени, в макрофагах.

Функции лейкоцитов : иммунная защита, фагоцитоз чужеродных частиц.

Свойства лейкоцитов:

    Амебовидная подвижность.

    Диапедез - способность проходить сквозь стенку сосудов в ткани.

    Хемотаксис - движение в тканях к очагу воспаления.

    Способность к фагоцитозу - поглощению чужеродных частиц.

В крови у здоровых людей в состоянии покоя количество лейкоцитов колеблетсяот 3,8-9,8 тыс. в 1 мл.

Увеличение количества лейкоцитов в крови называется лейкоцитоз.

Виды лейкоцитоза:

Физиологический лейкоцитоз (в норме) - после еды и физической нагрузки.

Патологический лейкоцитоз - возникает при инфекционных, воспалительных, гнойных процессах, лейкозах.

Понижение количества лейкоцитов в крови называется лейкопения, может быть при лучевой болезни, истощении, алейкемическом лейкозе.

Процентное соотношение видов лейкоцитов между собой называется лейкоцитарная формула.

Впервые клетки крови обнаружил итальянский анатом и врач М. Мальпиги (1665). Среди форменных элементов крови различают эритроциты, лейкоциты и тромбоциты.

Эритроциты - красные кровяные тельца, содержащие гемоглобин. Их количество зависит от пола, возраста, состояния здоровья, высоты над уровнем моря и др. Ежедневно разрушается около 200 млрд этих клеток. Общая площадь поверхности эритроцитов взрослого человека составляет около 3800 м2, что в 1500 раз превышает поверхность человеческого тела. Образование эритроцитов способствуют витамины В11, В12, С. Основная функция эритроцитов - транспортировка газов. Транспортировку кислорода осуществляется с помощью гемоглобина, а транспортировки углекислого газа - в виде карбгемоглобин. Присоединение кислорода к гемоглобину с образованием оксигемоглобина происходит при парциальном давлении 70-73 мм. рт. ст. Один грамм гемоглобина может присоединить 1,34 мл кислорода.

Гемоглобин - красный дыхательный железосодержащий пигмент эритроцитов. Строение молекулы гемоглобина расшифровали и создали ее модель в 1960 году английские ученые М. Перутц и Д. Кендрью. Гемоглобин входит в сложных белков - хромопротеидов, состоит из простетической группы (гема ) и белковой части (глобина ) . В молекуле гемоглобина содержится 1 молекула глобина и 4 молекулы гема, который удерживает в своем составе атом железа, способный присоединять или отдавать кислород без изменения валентности. На биосинтез гемоглобина влияют витамины (В6, В12, фолиевая кислота), микроэлементы и др. В 1 литре крови содержится 140-160 г гемоглобина. Соединениями гемоглобина являются:

оксигемоглобин - соединение гемоглобина с кислородом, которая имеет ярко-красный цвет и является неустойчивой (НbO2)

карбгемоглобин - соединение гемоглобина с углекислым газом, который имеет темно красный цвет и является неустойчивой (НbСO2)

карбоксигемоглобин - патологическая соединение гемоглобина с угарным газом, которая с устойчивой и в этом соединении гемоглобин теряет способность переносить кислород (НbСО)

метгемоглобин - патологическая соединение гемоглобина с кислородом, образуется под действием сильных окислителей, например, нитратов (MtHb).

Состояние, при котором количество эритроцитов и гемоглобина в единице объема уменьшена, называется анемией, или малокровием. Кровь переносит меньше кислорода, и поэтому наступает кислородная недостаточность, которая влияет на умственную деятельность и физическую активность. Человек жалуется на одышку, чувствует слабость, шум в ушах, кожа и слизистые оболочки бледнеют. Основными причинами анемии могут быть: а) заболевания красного костного мозга, селезенки, печени 6) действие алкоголя, некоторых химических веществ (соли тяжелых металлов, соединения бензола) или токсинов, радиационное загрязнение; в) авитаминозы (при отсутствии В11, В12) г) недостаток железа и др. Усиленное витаминизированное питание, правильный режим труда и отдыха помогают восстановить нормальное содержание гемоглобина в крови.

Лейкоциты - белые кровяные тельца, которые способны к самостоятельному передвижению. Количество лейкоцитов колеблется в значительных пределах в зависимости от времени суток, состояния организма, сильных эмоциональных реакций, боли, инфекционных заболеваний и тому подобное. Отдельные лейкоциты могут жить десятки лет (например, клетки иммунологической памяти). Все лейкоциты способны к фагоцитозу, который был открыт и описан 1.1. Мечниковым. На фагоцитарной функции основываются основные функции лейкоцитов: питательная (способны переваривать и переносить продукты переваривания другим клеткам), выделительная (неперевариваемые частицы вместе с лейкоцитами поступают в пищеварительный канал и выводятся из организма) и защитная (уничтожение чужеродных клеток и веществ). Лейкоциты осуществляют свои функции после поступления в ткани. По морфологическим признакам лейкоциты разделяют на группы: гранулоциты и агранулоциты. Соотношение различных видов лейкоцитов в крови является характеристикой состояния организма человека и называется лейкоцитарной формулой.

Лейкоциты, их разновидность и функции

Тромбоциты - кровяные пластинки, которые играют важную роль при свертывании крови. Образуются в красном костном мозге путем отщепления небольших частиц цитоплазмы от крупных кроветворных клеток - мегакариоцитов. их мембрана неустойчива к механическим воздействиям и легко разрушается, поэтому продолжительность их жизни - 10-12 дней. Тромбоциты обладают способностью прилипать к чужеродным агентам, фагоциту- ваты вирусы и таким образом участвуют в поддержании неспецифического иммунитета.

Строение и функции клеток крови

Место

образование

Красный костный мозг

Красный костный мозг, тимус, селезенка, лимфатические узлы

Красный костный мозг

продолжительность

100-120 дней

От 1-3 суток до десятков лет

10-12 суток

увеличение и

уменьшение

количества

эритроцитоз

лейкоцитоз

тромбоцитоз

эритропения

лейкопения

тромбоцитопения

транспортная

Защитная (фагоцитоз микробов, образование антител, разрушение токсинов, переваривания собственных отмерших клеток)

Свертывания крови, склеивают и фагоцитирующих микроорганизмы, участие в фибринолизе

Форменные элементы - это общее название клеток крови. К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты. Каждый из этих классов клеток, в свою очередь, делится на подклассы.

Поскольку необработанные специальным образом клетки, которые изучаются с помощью микроскопа, практически прозрачны и бесцветны, образец крови наносится на лабораторное стекло и окрашивается специальными красителями. Клетки различаются по размерам, форме, форме ядра и способности связывать краски. Все эти признаки клеток называются морфологическими.

Эритроциты

Эритроцитами (от греч. erythros - «красный» и kytos - «вместилище», «клетка») называются красные кровяные тельца - наиболее многочисленный класс клеток крови.

Форма и строение

Эритроциты человека лишены ядра и состоят из каркаса, заполненного гемоглобином, и белково-липидной оболочки - мембраны. Популяция эритроцитов неоднородна по форме и размерам.

В норме основную массу их (80-90 %) составляют дискоциты (нормоциты) - эритроциты в виде двояковогнутого диска диаметром
7.5 мкм, толщиной на периферии 2,5 мкм, в центре - 1.5мкм. Увеличение диффузионной поверхности мембраны способствует оптимальному выполнению основной функции эритроцитов - транспортировки кислорода.

Форменные элементы крови в мазке

Специфическая форма обеспечивает также прохождение их через узкие капилляры. Поскольку ядро отсутствует, много кислорода на собственные нужды эритроцитам не требуется, что позволяет им полноценно снабжать кислородом весь организм.

  1. эритроцит;
  2. сегментоядерный нейтрофильный гранулоцит;
  3. палочкоядерный нейтрофильный гранулоцит;
  4. юный нейтрофильный гранулоцит;
  5. эозинофильный гранулоцит;
  6. базофильный гранулоцит;
  7. большой лимфоцит;
  8. средний лимфоцит;
  9. малый лимфоцит;
  10. моноцит;
  11. тромбоциты (кровяные пластинки)

Помимо дискоцитов различают также планоциты (клетки с плоской поверхностью) и стареющие формы эритроцитов: шиловидные, или эхиноциты (~ 6 %); куполообразные, или стоматоциты (~ 1-3 %); шаровидные, или сфероциты (~ 1 %).

Функции эритроцитов

  • транспортная (газообмен): перенос кислорода от альвеол легких к тканям и углекислого газа в обратном направлении
  • регуляция pH крови (кислотности)
  • питательная; перенос на своей поверхности аминокислот от органов пищеварения к клеткам организма
  • защитная: адсорбция на своей поверхности токсических веществ
  • за счет содержания факторов свертывающей системы участвуют в процессе свертывания крови
  • являются носителями разнообразных ферментов и витаминов (В 1 В 2 , В 6 , аскорбиновая кислота)
  • несут в себе признаки определенной группы крови

  1. нормоциты в форме двояковогнутого диска;
  2. нормоциты, вид сбоку;
  3. сфероциты;
  4. эхиноциты

Гемоглобины и его соединения

Начинкой красных кровяных клеток является гемоглобин - особый белок, благодаря которому эритроциты выполняют функцию газообмена и поддерживают pH крови. В норме у мужчин в каждом литре крови содержится в среднем 130-160г гемоглобина, а у женщин - 120-150г.

Гемоглобин состоит из белка глобина и небелковой части - четырех молекул гема, в каждую из которых входит атом железа, способный присоединять или отдавать молекулу кислорода.

Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин - непрочное со-единение, в виде которого переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбогемоглобина. В виде этого соединения, которое также легко распадается, переносится 20 % углекислого газа.

В скелетных и сердечной мышцах находится миоглобин - мышечный гемоглобин, который играет важную роль в снабжении работающих мышц кислородом.

Существует несколько форм гемоглобина, отличающихся строением его белковой части - глобина. Так, в крови плода содержится гемоглобин F, тогда как в эритроцитах взрослого человека преобладает гемоглобин А. Различия в строении белковой части определяют сродство гемоглобина к кислороду. У гемоглобина A оно намного больше, что помогает плоду не испытывать гипоксию при относительно низком содержании кислорода в его крови.

В медицине принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель, который в норме равен 1 (нормохромные эритроциты). Определение его важно для диагностики различных видов анемий . Так, гипохромные эритроциты (менее 0.85) свидетельствуют о железодефицитной анемии, а гиперхромные (более 1,1) - о нехватке витамина В 12 или фолиевой кислоты.

Ряд заболеваний связан с появлением в крови патологических форм гемоглобина. Наиболее известной наследственной патологией гемоглобина является серповидноклеточная анемия: эритроциты в крови больного по форме напоминают серп. Отсутствие или замена нескольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина.

Эритропоез

Эритропоэз, то есть процесс образования эритроцитов, происходит в красном костном мозге. Эритроциты вместе с кроветворной тканью носят название красный росток крови, или эритрон.

Для образования эритроцитов необходимы прежде всего железо и определенные витамины.

Железо организм получает как из гемоглобина разрушающихся эритроцитов, так и с пищей: всосавшись, оно транспортируется плазмой в костный мозг, где включается в молекулу гемоглобина. Избыток железа складируется в печени. При недостатке этого важнейшего микроэлемента развивается железодефицитная анемия.

Для образования эритроцитов требуются витамин В 12 , (цианокобаламин) и фолиевая кислота, которые участвуют в синтезе ДНК в молодых формах эритроцитов. Витамин В 2 (рибофлавин) необходим для образования каркаса эритроцитов. Витамин В 6 (пиридоксин) принимает участие в образовании гема. Витамин С (аскорбиновая кислота) стимулирует всасывание железа из кишечника, усиливает действие фолиевой кислоты. Витамины Е (альфа-токоферол) и РР (пантотеновая кислота) укрепляют мембрану эритроцитов, защищая их от разрушения.

Для нормального эритропоэза необходимы и другие микроэлементы. Так, медь помогает всасыванию железа в кишечнике, а никель и кобальт участвуют в синтезе красных кровяных телец. Интересно, что 75 % всего цинка, который содержится в человеческом организме, находится в эритроцитах. (Недостаток цинка вызывает также и уменьшение количества лейкоцитов.) Селен, взаимодействуя с витамином Е, защищает мембрану эритроцита от повреждения свободными радикалами (радиацией).

Выработку эритропоэтина стимулирует любая нехватка кислорода: кровопотеря, анемия, заболевания сердца и легких, а также пребывание в горах. Именно поэтому спортсмены тренируются в условиях среднегорья, где содержание кислорода в воздухе меньше: это позволяет им, ускорив синтез гемоглобина и увеличив доставку кислорода в мышцы, улучшить свои результаты.

Процесс эритропоэза регулирует гормон эритропоэтин, образующийся главным образом в почках, а также в печени, селезенке и в небольших количествах постоянно присутствующий в плазме крови здоровых людей. Он усиливает продукцию эритроцитов и ускоряет синтез гемоглобина. При тяжелых заболеваниях почек выработка эритропоэтина снижается и развивается анемия.

Эритропоэз активируется мужскими половыми гормонами, что обусловливает большее содержание эритроцитов в крови у мужчин, чем у женщин. Торможение эритропоэза вызывают особые вещества - женские половые гормоны (эстрогены), а также ингибиторы эритропоэза, образующиеся при увеличении массы циркулирующих эритроцитов, например при спуске с гор на равнину.

Об интенсивности эритропоэза судят по числу ретикулоцитов - незрелых эритроцитов, количество которых в норме составляет 1-2 %. Созревшие эритроциты циркулируют в крови в течение 100-120 дней. Разрушение их происходит в печени, селезенке и костном мозге. Продукты распада эритроцитов также являются стимуляторами кроветворения.

Эритропоцитоз

12 В зависимости от причины возникновения различают 2 вида эритроцитозов.

  • Компенсаторные - возникают в результате попытки организма адаптироваться к нехватке кислорода в какой-либо ситуации: при длительном проживании в высокогорной местности, у профессиональных спортсменов, при бронхиальной астме , гипертонической болезни.
  • Истинная полицитемия - заболевание, при котором вследствие нарушения работы костного мозга увеличивается выработка красных кровяных клеток.