Строение клетки эукариот. Особенности строения клеток. Раствор гипертонический-происходит плазмолиз клеток

Плазмалемма (клеточная оболочка) животных клеток образована мембраной, покрытой снаружи слоем гликокаликса толщиной 10-20 нм.Плазмалемма выполняет отграничивающую, барьерную, транспортную и рецепторную функции. Благодаря свойству избирательной проницаемости плазмалемма регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества (гормоны). В пластах и слоях соседние клетки удерживаются благодаря наличию разного вида контактов, которые представлены участками плазмалеммы, имеющими особое строение. Изнутри к мембране примыкает кортикальный (корковый) слой цитоплазмы толщиной 0,1-0,5 мкм.

Цитоплазма. В цитоплазме находится целый ряд оформленных структур, имеющих закономерные особенности строения и поведения в разные периоды жизнедеятельности клетки. Каждая из этих структур несёт определенную функцию. Отсюда возникло сопоставление их с органами целого организма, в связи с чем они получили названиеорганеллы , илиорганоиды . В цитоплазме откладываются различные вещества - включения (гликоген, капли жира, пигменты). Цитоплазма пронизана мембранами эндоплазматической сети .

Эндоплазматическая сеть (ЭДС) . Эндоплазматическая сеть - это разветвлённая сеть каналов и полостей в цитоплазме клетки, образованная мембранами. На мембранах каналов находятся многочисленные ферменты, обеспечивающие жизнедеятельность клетки. Различают 2 вида мембран ЭДС - гладкие и шероховатые. На мембранах гладкой эндоплазматической сети находятся ферментные системы, участвующие в жировом и углеводном обмене. Основная функцияшероховатой эндоплазматической сети - синтез белков, который осуществляется в рибосомах, прикрепленных к мембранам.Эндоплазматическая сеть - это общая внутриклеточная циркуляционная система, по каналам которой транспортируются вещества внутри клетки и из клетки в клетку.

Рибосомы осуществляют функцию синтеза белков. Рибосомы представляют собой сферические частицы диаметром 15-35нм, состоящие из 2 субъединиц неравных размеров и содержащие примерно равное количество белков иРНК. Рибосомы в цитоплазме располагаются или прикрепляются к наружной поверхности мембран эндоплазматической сети. В зависимости от типа синтезируемого белка рибосомы могут объединяться в комплексы -полирибосомы . Рибосомы присутствуют во всех типах клеток.

Комплекс Гольджи. Основным структурным элементомкомплекса Гольджи является гладкая мембрана, которая образует пакеты уплощенных цистерн, или крупные вакуоли, или мелкие пузырьки. Цистерны комплекса Гольджи соединены с каналами эндоплазматической сети. Синтезированные на мембранах эндоплазматической сети белки, полисахариды, жиры транспортируются к комплексу, конденсируются внутри его структур и "упаковываются" в виде секрета, готового к выделению, либо используются в самой клетке в процессе её жизнедеятельности.

Митохондрии. Всеобщее распространение митохондрий в животном и растительном мире указывают на важную роль, которуюмитохондрии играют в клетке.Митохондрии имеют форму сферических, овальных и цилиндрических телец, могут быть нитевидной формы. Размеры митохондрий 0,2-1мкм в диаметре, до 5-7мкм в длину. Длина нитевидных форм достигает 15-20мкм. Количество митохондрий в клетках различных тканей неодинаково, их больше там, где интенсивны синтетические процессы (печень) или велики затраты энергии. Стенка митохондрий состоит из 2-х мембран - наружной и внутренней. Наружная мембрана гладкая, а от внутренней внутрь органоида отходят перегородки - гребни, или кристы. На мембранах крист находятся многочисленные ферменты, участвующие в энергетическом обмене.Основная функция митохондрий - синтезАТФ.

Лизосомы - небольшие овальные тельца диаметром около 0,4мкм, окруженные одной трехслойной мембраной. В лизосомах находится около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и др. вещества. Расщепление веществ с помощью ферментов называетсялизисом , поэтому и органоид названлизосомой . Полагают, что лизосомы образуются из структур комплекса Гольджи либо непосредственно из эндоплазматической сети.Функции лизосом : внутриклеточное переваривание пищевых веществ, разрушение структуры самой клетки при её отмирании в ходе эмбрионального развития, когда происходит замена зародышевых тканей на постоянные, и в ряде других случаев.

Центриоли. Клеточный центр состоит из 2-х очень маленьких телец цилиндрической формы, расположенных под прямым углом друг к другу. Эти тельца называютсяцентриолями . Стенка центриоли состоит из 9-ти пар микротрубочек. Центриоли способны к самосборке и относятся к самовоспроизводящимся органоидам цитоплазмы. Центриоли играют важную роль в клеточном делении: от них начинается рост микротрубочек, образующих веретено деления.

Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулыДНКи поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившаяядро , не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму.Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом.Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму.Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

2) 1. Клеточная теория

Клеточная теория – это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.

Роберт Гук первым наблюдал с помощью увеличительных линз подразделение тканей пробки на «ячейки», или «клетки». Его описания послужили толчком для появления систематических исследований анатомии растений, которые подтвердили наблюдения Роберта Гука и показали, что разнообразные части растений состоят из тесно расположенных «пузырьков», или «мешочков». Позднее А. Левенгук открыл мир одноклеточных организмов и впервые увидел клетки животных. Позднее клетки животных были описаны Ф. Фонтана; но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии и клетки связан с развитие микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки – ядро. Все эти многочисленные наблюдения позволили Т. Шванну в 1838 г. сделать ряд обобщений. Он показал, что клетки растений и животных принципиально сходны между собой. «Заслуга Т. Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение». Дальнейшее развитие эти представления получили в работах Р. Вирхова. Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужили главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:

1) Клетка – элементарная единица живого: – вне клетки нет жизни.

2) Клетка – единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц – органелл или органоидов.

3) Клетки сходны – гомологичны – по строению и по основным свойствам.

4) Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.

5) Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.

6) Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию – к дифференцировке.

Представление о клетке как о самостоятельной жизнедеятельной единице было дано еще в работах Т. Шванна. Р. Вирхов также считал, что каждая клетка несет в себе полную характеристику жизни: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне ее».

Современная наука полностью доказала это положение. В популярной литературе клетку часто называют «атомом жизни», «квантом жизни», подчеркивая тем самым, что клетка – это наименьшая единица живого, вне которой нет жизни.

Такая общая характеристика клетки должна в свою очередь опираться на определение живого – что такое живое, что такое жизнь. Очень трудно дать окончательное определение живого, жизни.

М.В. Волькенштейн дает следующее определение жизни: «живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими веществами которых являются белки и нуклеиновые кислоты». Живому свойствен ряд совокупных признаков, таких, как способность к воспроизведению, использование и трансформация энергии, метаболизм, чувствительность, изменчивость. И такую совокупность этих признаков можно обнаружить на клеточном уровне. Нет меньшей единицы живого, чем клетка. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, выделенные актомиозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки прекрасно «работают» многие ферменты, участвующие в синтезе или распаде сложных биоорганических молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок, разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т.д. Можно ли считать все эти клеточные компоненты, структуры, ферменты, молекулы живыми? Можно ли считать живым актомиозиновый комплекс? Думается, что нет, хотя бы потому, что он обладает лишь частью набора свойств живого. То же относится и к остальным примерам. Только клетка как таковая является наименьшей единицей, обладающей всеми вместе взятыми свойствами, отвечающими определению «живое».

3) Основу поверхностного аппарата клеток (ПАК) составляет наружная клеточная мембрана, или плазмалемма. Кроме плазмалеммы в ПАК имеется надмембранный комплекс, а у эукариот - и субмембранный комплекс. Основными биохимическими компонентами плазмалеммы (от греч. плазма - образование и лемма - оболочка, корка) являются липиды и белки. Их количественное соотношение у большинства эукариот составляет 1:1, а у прокариот в плазмалемме преобладают белки. В наружной клеточной мембране обнаруживается небольшое количество углеводов и могут встречаться жироподобные соединения (у млекопитающих - холестерол, жирорастворимые витамины). В 1925 г. Е. Гортер и Ф. Грендел (Голландия) предположили, что основу мембраны составляет двойной слой липидов - билипидный слой. В 1935 г. Дж.Даниэли и Г.Даусон предложили первую пространственную модель организации мембран, получившую название "сэндвич", или "бутербродная " модель. По их мнению, основой мембраны является билипидный слой, а обе поверхности слоя покрыты сплошными слоями белков. Дальнейшее изучение клеточных мембран, включая плазмалемму, показало, что почти во всех случаях они имеют сходное строение. В 1972 г. С.Зингер и Г.Николсон (США) сформулировали представление о жидкостно-мозаичном строении клеточных мембран (рис.). Согласно этой модели, основу мембран составляет билипидный слой, но белки в нем расположены отдельными молекулами и комплексами, т.е. мозаично (от франц. mosaique - мозаика; изображение, составленное из отдельных кусков). В частности, молекулы интегральных (от лат. интегер - целый) белков могут пересекать билипидный слой, полуинткгральных - частично погружаться в него, а периферических (от греч. периферия - окружность) - располагаться на его поверхности (рис.). Современная молекулярная биология подтвердила справедливость жидкостно-мозаичной модели, хотя были обнаружены и другие варианты клеточных мембран. В частности, у архебактерий основу мембраны составляет монослой сложного по строению липида, а некоторые бактерии содержат в цитоплазме мембранные пузырьки, стенки которых представлены белковым монослоем. Надмембранный комплекс поверхностного аппарата клеток характеризуется многообразием строения (рис.). У прокариот надмембранный комплекс в большинстве случаев представлен клеточной стенкой различной толщины, основу которой составляет сложный гликопротеин муреин (у архебактерий - псевдомуреин). У целого ряда эубактерий наружная часть надмембранного комплекса состоит из еще одной мембраны с большим содержанием липополисахаридов.У эукариот универсальным компонентом надмембранного комплекса являются углеводы - компоненты гликолипидов и гликопротеинов плазмалеммы. Благодаря этому его исходно называли гликокаликсом (от греч. гликос - сладкий, углевод и лат. каллум - толстая кожа, оболочка). Кроме углеводов, в состав гликокаликса относят периферические белки над билипидным слоем. Более сложные варианты надмембранного комплекса встречаются у растений (клеточная стенка из целлюлозы), грибов и членистоногих (наружный покров из хитина). Субмембранный (от лат. суб - под) комплекс характерен только для эукариотических клеток. Он состоит из разнообразных белковых нитевидных структур: тонких фибрилл (от лат. фибрилла - волоконце, ниточка), микрофибрилл (от греч. микрос - малый), скелетных (от греч. скелетон - высушенное) фибрилл и микротрубочек. Они связаны друг с другом белками и формируют опорно-сократительный аппарат клетки. Субмембранный комплекс взаимодействует с белками плазмалеммы, которые, в свою очередь, связаны с надмембранным комплексом. В результате ПАК представляет собой структурно целостную систему. Это позволяет ему выполнять важные для клетки функции: изолирующую, транспортную, каталитическую, рецепторно-сигнальную и контактную.

4) В мембранах содержатся также гликолипиды и холестерол. Гликолипиды - это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, угликолипидов имеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

Основные компоненты эукариотной клетки

Эукариотные клетки (рис. 1 и 2) организованы значительно сложнее прокариотных. Весьма разнообразны они и по своим размерам (от нескольких микрометров до нескольких сантиметров), и по форме, и по структурным особенностям (рис. 3).

Каждая эукариотическая клетка имеет обособленное ядро, в котором заключен отграниченный от матрикса ядерной мембраной генетический материал (это главное отличие от прокариотических клеток). Генетический материал сосредоточен преимущественно в виде хромосом, имеющих сложное строение и состоящих из нитей ДНК и белковых молекул. Деление клеток происходит посредством митоза (а для половых клеток - мейоза). Среди эукариотов есть как одноклеточные, так и многоклеточные организмы.

Существует несколько теорий происхождения эукариотических клеток, одна из них - эндосимбионтическая. В гетеротрофную анаэробную клетку проникла аэробная клетка типа бактериоподобной, которая послужила базой для появления митохондрий. В эти клетки начали проникать спирохетоподобные клетки, которые дали начало формированию центриолей. Наследственный материал отгородился от цитоплазмы, возникло ядро, появился митоз. В некоторые эукариотические клетки проникли клетки типа сине-зеленых водорослей, которые положили начало появлению хлоропластов. Так впоследствии возникло царство растений.

Размеры клеток тела человека варьируются от 2-7 мкм (у тромбоцитов) до гигантских размеров (до 140 мкм у яйцеклетки).

Форма клеток обусловлена выполняемой ими функцией: нервные клетки - звездчатые за счет большого количества отростков (аксона и дендритов), мышечные клетки - вытянутые, так как должны сокращаться, эритроциты могут менять свою форму при продвижении по мелким капиллярам.

Строение эукариотических клеток животных и растительных организмов во многом схоже. Каждая клетка снаружи ограничена клеточной оболочкой, или плазмалеммой. Она состоит из цитоплазматической мембраны и слоя гликокаликса (толщиной 10-20 нм), который покрывает ее снаружи. Компоненты гликокаликса - комплексы полисахаридов с белками (гликопротеины) и жирами (гликолипиды).

Цитоплазматическая мембрана - это комплекс бислоя фосфолипидов с протеинами и полисахаридами.

В клетке выделяют ядро и цитоплазму. Клеточное ядро состоит из мембраны, ядерного сока, ядрышка и хроматина. Ядерная оболочка состоит из двух мембран, разделенных перинуклеарным пространством, и пронизана порами.

Основу ядерного сока (матрикса) составляют белки: нитчатые, или фибриллярные (опорная функция), глобулярные, гетероядерные РНК и мРНК (результат процессинга).

Ядрышко - это структура, где происходит образование и созревание рибосомальных РНК (р-РНК).

Хроматин в виде глыбок рассеян в нуклеоплазме и является интерфазной формой существования хромосом.

В цитоплазме выделяют основное вещество (матрикс, гиалоплазму), органеллы и включения.

Органеллы могут быть общего значения и специальные (в клетках, выполняющих специфические функции: микроворсинки всасывающего эпителия кишечника, миофибриллы мышечных клеток и т. д.).

Органеллы общего значения - эндоплазматическая сеть (гладкая и шероховатая), комплекс Гольджи, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра.

В растительных клетках есть еще и хлоропласты, в которых протекает фотосинтез.

Рис. 1. Строение клетки эукариот. Обобщенная схема

Рис. 2. Строение клетки по данным электронной микроскопии

Рис. 3. Разные эукариотные клетки: 1 - эпителиальная; 2 - крови (e- эритроцит, l - лейкоцит); 3 - хряща; 4 - кости; 5 - гладкая мышечная; 6 - соединительной ткани; 7 - нервные клетки; 8 - поперечно-полосатое мышечное волокно

Однако общая организация и наличие основополагающих компонентов у всех эукариотных клеток одинаковы (рис. 4).

Рис.4. Эукариотная клетка (схема)

Краснодембский Е. Г.»Общая биология: Пособие для старшеклассников и поступающих в вузы»

Н. С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»

Все живые организмы можно разделить на две основные груп-пы: прокариоты и эукариоты . Эти термины происходят от гре-ческого слова karion, означающего ядро. Прокариоты - доядерные организмы, не имеют оформленного ядра. Эукарио-ты содержат оформленное ядро. К прокариотам относятся бактерии, цианобактерии, миксомицеты, риккетсии и др. орга-низмы; эукариотами являются грибы, растения и животные.

Клетки всех эукариот имеют сходное строение.

Они состоят из цитоплазмы и ядра , которые вместе представляют собой живое содержимое клетки - протопласт. Цитоплазма пред-ставляет собой полужидкое основное вещество или гиалоплаз-му, вместе с погруженными в нее внутриклеточными структу-рами - органеллами, выполняющими различные функции.

С внешней стороны цитоплазма окружена плазмати-ческой мембраной. Растительные и грибные клетки имеют также жесткую клеточную оболочку. В цитоплазме клеток растений и грибов имеются вакуоли - пузырьки, заполненные водой и растворенными в ней различными веществами.

Кро-ме того, в клетке могут находиться включения - запасные питательные вещества или конечные продукты обмена.

СтруктураОсобенности организацииФункции
Плазматическая мембрана (плазмалемма) Двойной слой липидов и погруженные в него белки Избирательно регулирует обмен веществ между клеткой и внешней средой.

Обеспечивает контакт между соседними клетками

Ядро Имеет двумембранную оболочку, содержит ДНК Хранение и передача дочерним клеткам генетического материала. Регулирует клеточную активность
Митохондрии.

Присутствуют в растительной и животной клетках

Окружена двумембранной оболочкой; внутренняя мембрана образует складки – кристы.

Содержит кольцевую ДНК, рибосомы, множество ферментов

Осуществление кислородного этапа клеточного дыхания (синтез АТФ)
Пластиды. Содержатся в растительной клетке Двумембранная структура. Производные внутренней мембраны - тилакоиды (содержат хлорофилл в хлоропластах). Фотосинтез, запасание питательных веществ
Эндоплазматический ретикулум (ЭР) Система уплощенных мембранных мешочков - цистерн, полостей, трубочек На шереховатом ЭР расположена рибосомы.

В его цистернах изолируются и дозревают синтезированные белки. Транспорт синтезированных белков. В мембранах гладкого ЭР осуществляется синтез липидов и стероидов. Синтез мембран

Комплекс Гольджи (КГ) Система плоских одномембранных цистерн, ампулярно расширенных на концах цистерн и пузырьков, отщепляющихся или присоединяющихся к цистернам Накопление, преобразование белков и липидов, синтез полисахаридов.

Образование секреторных пузырьков, выведе веществ за пределы клетки Образование лизосом

Лизосомы Одномембранные пузырьки, содержащие гидролитические ферменты Внутриклеточное переваривание, расщепление поврежденных органелл, отмерших клеток, органов
Рибосомы Две субъединицы (большая и малая), состоящие из рРНК и белков Сборка белковых молекул
Центриоли Система микротрубочек (9×3), построенных из белковых субъединиц Центры организации микротрубочек (участвуют в образовании цитоскелета, веретена деления клетки, ресничек и жгутиков)

Типы клеточной организации

Среди всего многообразия ныне существующих на Земле организмов выделяют две группы: вирусы и фаги, не имеющие клеточного строения; все остальные организмы представлены разнообразными клеточными формами жизни.

Различают два типа клеточной организации: прокариотический и эукариотический.

Клетки прокариотического типа устроены сравнительно просто. В них нет морфологически обособленного ядра, единственная хромосома образована кольцевидной ДНК и находится в цитоплазме; мембранные органеллы отсутствуют (их функцию выполняют различные впячивания плазматической мембраны); в цитоплазме имеются многочисленные мелкие рибосомы; микротрубочки отсутствуют, поэтому цитоплазма неподвижна, а реснички и жгутики имеют особую структуру.

К прокариотам относят бактерии.

Большинство современных живых организмов относится к одному из трех царств – растений, грибов или животных, объединяемых в надцарство эукариот.

В зависимости от количества, из которых состоят организмы, последние делят на одноклеточные и многоклеточные. Одноклеточные организмы состоят из одной единственной клетки, выполняющей все функции. Многие из этих клеток устроены гораздо сложнее, чем клетке многоклеточного организма.

Одноклеточными являются все прокариоты, а также простейшие, некоторые зеленые водоросли и грибы.

Основу структурной организации клетки составляют биологические мембраны. Мембраны состоят из белков и липидов. В состав мембран входят также углеводы в виде гликолипидов и гликопротеинов, располагающихся на внешней поверхности мембраны.

Набор белков и углеводов на поверхности мембраны каждой клетки специфичен и определяет её «паспортные» данные. Мембраны обладают свойством избирательной проницаемости, также свойством самопроизвольного восстановления целостности структуры.

Они составляют основу клеточной оболочки, формируют ряд клеточных структур.

Строение эукариотической клетки

Схема строения плазматической мембраны:

1 - фосфолипиды;
2 - холестерин;
3 - интегральный белок;
4 - олигосахаридная боковая цепь.

Электронограмма клеточного центра (две центриоли в конце G1-периода клеточного цикла):
1 - центриоли в поперечном сечении;
2 - центриоли в продольном сечении.

Комплекс Гольджи:

1 — цистерны;
2 — везикулы (пузырьки);
3 — крупная вакуоль.

Типичная эукариотическая клетка состоит из трех компонентов: оболочки, цитоплазмы и ядра.

Клеточная оболочка

Снаружи клетка окружена оболочкой, основу которой составляет плазматическая мембрана, или плазмалемма (см.

рис. 2), имеющая типичное строение и толщину 7,5 нм.

Клеточная оболочка выполняет важные и весьма разнообразные функции: определяет и поддерживает форму клетки; защищает клетку от механических воздействий проникновения повреждающих биологических агентов; осуществляет рецепцию многих молекулярных сигналов (например, гормонов); ограничивает внутреннее содержимое клетки; регулирует обмен веществ между клеткой и окружающей средой, обеспечивая постоянство внутриклеточного состава; участвует в формировании межклеточных контактов и различного рода специфических выпячивании цитоплазмы (микроворсинок, ресничек, жгутиков).

Углеродный компонент в мембране животных клеток называется гликокаликсом.

Обмен веществ между клеткой и окружающей ее средой происходит постоянно.

Механизмы транспорта веществ в клетку и из нее зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме активного и пассивного транспорта.

В зависимости от вида и направления различают эндоцитоз и экзоцитоз.

Поглощение и выделение твердых и крупных частиц получило соответственно названия фагоцитоз и обратный фагоцитоз, жидких или растворенных частичек – пиноцитоз и обратный пиноцитоз.

Цитоплазма.

Органоиды и включения

Цитоплазма представляет собой внутреннее содержимое клетки и состоит из гиалоплазмы и находящихся в нем разнообразных внутриклеточных структур.

Гиалоплазма (матрикс) – это водный раствор неорганических и органических веществ, способный изменять свою вязкость и находящиеся в постоянном движении. Способность к движению или, течению цитоплазмы, называют циклозом.

Матрикс – это активная среда, в которой протекают многие физические и химические процессы и которая объединяет все элементы клетки в единую систему.

Цитоплазматические структуры клетки представлены включениями и органоидами.

Включения – относительно непостоянные, встречающиеся в клетках некоторых типов в определенные моменты жизнедеятельности, например, в качестве запаса питательных веществ (зерна крахмала, белков, капли гликогена) или продуктов подлежащих выделению из клетки.

Органоиды – постоянные и обязательные компоненты большинства клеток, имеющим специфическую структуру и выполняющим жизненно важную функцию.

К мембранным органоидам эукариотической клетки относят эндоплазматическую сеть, аппарат Гольджи, митохондрии, лизосомы, пластиды.

Эндоплазматическая сеть .

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети.

Эндоплазматическая сеть неоднородна по своему строению.

Известны два ее типа — гранулярная и гладкая. На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности.

Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах.

На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются н каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений.

Эндоплазматическая сеть связывает между собой основные органоиды клетки.

Аппарат Гольджи . Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра.

В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы.

В состав аппарата Гольджи входят: полости, ограниченные мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей.

Все эти элементы составляют единый комплекс.

Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме.

Например, в клетках поджелудочной железы млекопитающих синтезируются пищеварительные ферменты, которые накапливаются в полостях органоида. Затем образуются пузырьки, наполненные ферментами. Они выводятся из клеток в проток поджелудочной железы, откуда перетекают в полость кишечника. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран.

Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

Митохондрии. В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) — митохондрии (греч.

«митос» — нить, «хондрион» — зерно, гранула).

Митохондрии хорошо видны в световой микроскоп, с помощью которого можно рассмотреть их форму, расположение, сосчитать количество. Внутреннее строение митохондрий изучено с помощью электронного микроскопа. Оболочка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана гладкая, она не образует никаких складок и выростов. Внутренняя мембрана, напротив, образует многочисленные складки, которые направлены в полость митохондрии.

Складки внутренней мембраны называют кристами (лат. «криста» — гребень, вырост) Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен, причем особенно много крист в митохондриях активно функционирующих клеток, например мышечных.

Митохондрии называют «силовыми станциями» клеток» так как их основная функция — синтез аденозинтрифосфорной кислоты (АТФ). Эта кислота синтезируется в митохондриях клеток всех организмов и представляет собой универсальный источник энергии, необходимый для осуществления процессов жизнедеятельности клетки и целого организма.

Новые митохондрии образуются делением уже существующих в клетке митохондрий.

Лизосомы .

Представляют собой небольшие округлые тельца. От Цитоплазмы каждая лизосома отграничена мембраной. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты.

К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.

Вещества, образовавшиеся в результате переваривания пищевой частицы, поступают в цитоплазму и используются клеткой.

Обладая способностью к активному перевариванию пищевых веществ, лизосомы участвуют в удалении отмирающих в процессе жизнедеятельности частей клеток, целых клеток и органов. Образование новых лизосом происходит в клетке постоянно. Ферменты, содержащиеся в лизосомах, как и всякие другие белки синтезируются на рибосомах цитоплазмы.

Затем эти ферменты поступают по каналам эндоплазматической сети к аппарату Гольджи, в полостях которого формируются лизосомы. В таком виде лизосомы поступают в цитоплазму.

Пластиды. В цитоплазме клеток всех растений находятся пластиды.

В клетках животных пластиды отсутствуют. Различают три основных типа пластид: зеленые — хлоропласты; красные, оранжевые и желтые — хромопласты; бесцветные — лейкопласты.

Обязательными для большинства клеток являются также органоиды, не имеющие мембранного строения . К ним относятся рибосомы, микрофиламенты, микротрубочки, клеточный центр.

Рибосомы . Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм.

Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой.

В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме.

В состав рибосом входят белки и РНК. Функция рибосом — это синтез белка. Синтез белка — сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются.

Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

Микротрубочки и микрофиламенты – нитевидные структуры, состоящие из различных сократительных белков и обуславливающие двигательные функции клетки. Микротрубочки имеют вид полых цилиндров, стенки которых состоят из белков – тубулинов. Микрофиламенты представляют собой очень тонкие, длинные, нитевидные структуры, состоящие из актина и миозина.

Микротрубочки и микрофиламенты пронизывают всю цитоплазму клетки, формируя её цитоскелет, обуславливают циклоз, внутриклеточные перемещения органелл, расхождение хромосом при делении ядерного материала и т.д.

Клеточный центр (центросома) .

В клетках животных вблизи ядра находится органоид, который называют клеточным центром. Основную часть клеточного центра составляют два маленьких тельца — центриоли, расположенные в небольшом участке уплотненной цитоплазмы. Каждая центриоль имеет форму цилиндра длиной до 1 мкм. Центриоли играют важную роль при делении клетки; они участвуют в образовании веретена деления.

В процессе эволюций разные клетки приспосабливались к обитанию в различных условиях и выполнению специфических функции.

Это требовало наличия в них особых органоидах, которые называют специализированными в отличие от рассмотренных выше органоидов общего назначения.

К их числу относят сократительные вакуоли простейших, миофибриллы мышечного волокна, нейрофибриллы и синаптические пузырьки нервных клеток, микроворсинки эпителиальных клеток, реснички и жгутики некоторых простейших.

Ядро – наиболее важный компонент эукариотических клеток. Большинство клеток имеют одно ядро, но встречаются и многоядерные клетки (у ряда простейших, в скелетных мышцах позвоночных). Некоторые высоко специализированные клетки утрачивают ядра (эритроциты млекопитающих, например).

Ядро, как правило, имеет шаровидную или овальную форму, реже может быть сегментированным или веретеновидном.

В состав ядра входят ядерная оболочка и кариоплазма, содержащая хроматин (хромосомы) и ядрышки.

Ядерная оболочка образована двумя мембранами (наружной и внутренней) и содержит многочисленные поры, через которые между ядром и цитоплазмой происходит обмен различными веществами.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, в котором находятся разнообразные белки, нуклеотиды, ионы, а также хромосомы и ядрышко.

Ядрышко – небольшое округлое тельце, интенсивно окрашивающееся и обнаруживающееся в ядрах неделящихся клеток.

Функция ядрышка – синтез рРНК и соединение их с белками, т.е. сборка субчастиц рибосом.

Хроматин – специфически окрашивающиеся некоторыми красителями глыбки, гранулы и нитчатые структуры, образованные молекулами ДНК в комплексе с белками. Различные участки молекул ДНК в составе хроматина обладает разной степенью спирализации, а потому различаются интенсивностью окраски и характером генетической активности.

Хроматин представляет собой форму существования генетического материала в неделящихся клетках и обеспечивает возможность удвоение и реализации заключенной в нем информации.

В процессе деления клеток происходит спирализация ДНК и хроматиновые структуры образуют хромосомы.

Хромосомы – плотные, интенсивно окрашивающиеся структуры, которые являются единицами морфологической организации генетического материала и обеспечивают его точное распределение при делении клетки.

Число хромосом в клетках каждого биологического вида постоянно. Обычно в ядрах клеток тела (соматических) хромосомы представлены парами, в половых клетках они не парны. Одинарный набор хромосом в половых клетках называют гаплоидным (n), набор хромосом в соматических клетках диплоидным (2n).

Хромосомы разных организмов различаются размерами и формой.

Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, величиной и формой хромосом, называют кариотипом. В хромосомном наборе соматических клеток парные хромосомы называют гомологичными, хромосомы из разных пар — негомологичными. Гомологичные хромосомы одинаковы по размерам, форме, составу (одна унаследована от материнского, другая – от отцовского организма).

Строение эукариотической клетки

Хромосомы в составе кариотипа делят также на аутосомы, или неполовые хромосомы, одинаковые у особей мужского и женского, и гетерохромосомы, или половые хромосомы, участвующие в определении пола и различающиеся у самцов и самок. Кариотип человека представлен 46 хромосомами (23 пары): 44 аутосомы и 2 половые хромосомы (у женского пола две одинаковые X-хромосомы, у мужского – X- и Y- хромосомы).

Ядро осуществляет хранение и реализацию генетической информации, управление процессом биосинтеза белка, а через белки – всеми другими процессами жизнедеятельности.

Ядро участвует в репликации и распределении наследственной информации между дочерними клетками, а следовательно, и в регуляции клеточного деления и процессов развития организма.

так же:
Строение бактериальной клетки
Строение генома бактерий
Строение ферментов
Строение вирионов ретровирусов
Строение растительной клетки

Растворяется ядерная оболочка, хромосомы свободно располагаются в цитоплазме

4.хромосомы направляются к полюсам клетки

5.исчезает клеточная оболочка

97.Какие изменения происходят в интерфазе клеточного цикла в период деления:

1.делится цитоплазма 2.делится ядро 3).синтезируется ДНК

4.хромосомы расходятся к полюсам 5.хромосомы спирализируются

98.Фаза митоза, во время которой хромосомы находятся в упорядоченном состоянии в области экватора

анафаза 2. профаза 3. телофаза 4). метафаза 5. интерфаза

99. Регуляторами апоптоза являются:

1.ферменты 2.кровь 3.температура 4).гормоны 5.

100. Апоптоз – это

3.полиплоидия 4.1 и 2 ответы 5.появление двуядерных клеток

101. Оперируя лягушку, студенты постоянно смачивали ее органы солевым раствором, концентрация которого 9%. Лягушка погибла. Почему?

1. раствор гипотонический-клетки разбухают и лопаются

2. раствор изотонический-клетки теряют воду и гибнут

Раствор гипертонический-происходит плазмолиз клеток

раствор гипотонический-происходит плазмолиз клеток

5. Это физиологический раствор.

Схема строения эукариотической клетки

Причина гибели лягушки не

связана с его применением

102. Выведение веществ из клетки через комплекс Гольджи происходит в результате слияния мембран секреторных гранул с плазмолеммой в результате чего содержимое гранул оказывается за пределами клетки. С каким процессом мы имеем здесь дело

1. эндоцитоз 2). экзоцитоз 3. фагоцитоз

пиноцитоз 5. эндоцитоз путем пиноцитоза

103. События митоза в хронологическом порядке расположены под номером

1. хроматиды в виде сестринских хромосом распределяются по полюсам клетки, десперализуются, образуется ядерные оболочки, происходит цитокенез

2. хромосомы располагаются в плоскости экватора.

Нити веретена деления прикрепляются к центромерам отдельных хромосом

3. хромосомы спирализуются, ядерная оболочка исчезает, формируетcя веретено деления

4). 3-2-1 5. 3-1-2

104. Прокариоты отличаются от эукариот

1. отсутствием ядра и органоидов

2. отсутствием оболочки, ядра, органоидов

Отсутствием оформленного ядра, митохондрии, пластид, ЭПС

отсутствием ДНК, хромосом, ядра

5. только отсутствием оформленного ядра

105. Согласно денверовской классификации хромосомы человека классифицируют по признакам

месту локализации центромеры, количеству хромосом

2. биохимическому составу

3. степени сперализации и наличию аллельных генов

Размер, положение центромеры, наличие вторичных перетяжек и спутников

5. дифференциальной окраски метафазных хромосом

106. Если хромосомы кариотипа человека расположены попарно в порядке убывающей величины, называют

1. геном 2. генофонд 3). идиограмма 4.

кариотип 5. диплоидный набор

107. Половыми хромосомами называют

1. одинаковые в комплексе хромосом особей одного вида, но разного пола

Отличающиеся в комплексе хромосом особей одного вида, но разного пола

4. определяющие отличие между видами

108. Главными свойствами молекулы ДНК являются

1. денатурация и репарация

устойчивость к температуре

3. редупликация, денатурация, спирализация

Спирализация, деспирализация, редупликация

109. Если взять рибосомы кролика, а и-РНК, овцы, будет синтезироваться белок

1. кролика 2.) овцы 3. зависит от условий среды 4.

оба вида белка

5. при таком условии синтез белка не возможен

110. Аутосомы, это хромосомы

Одинаковые в комплексе хромосом особей одного вида, но разного пола

2. отличающиеся в комплексе хромосом особей одного вида, но разного пола

3. определяющие отличительные особенности данного вида

определяющие отличия между видами

5. одинаковые размером, формой, генным составом

111. Во время митоза белок не синтезируется потому, что

1. в клетке нет аминокислот

2. клетке нехватает энергии

3. не происходит транскрипции из-за недостатка нуклеотидов

Хромосомы спирализованы — не происходит транскрипции

112. Пассивное поступление веществ в клетку

калий-натриевый насос 2. фагоцитоз 3. пиноцитоз 4). диффузия 5. 2 и 3

113. Гибель клетки в гипертоническом растворе обьясняется тем, что

Вода покидает клетку

2. вода проникает в клетку в большом количестве

соли проникают в клетку

4. соли покидают клетку

5. вода не поступает в клетку, обьем клетки остается неизменным

114. По характеру ассимиляции все организмы делятся на

1. аутотрофные и гетеротрофные

2. аутотрофные и миксотрофные

голозойные и осмотические

4.) миксотрофные, гетеротрофные, аутотрофные

115. Наименьшей по объему структурой, которой присуща вся совокупность свойств жизни, которая может поддерживать эти свойства в себе и передавать их в ряду поколений, является

ген 2. ядро клетки 3). клетка 4. организм 5. хромосома

116. Для гетеротрофных организмов характерно

1. синтезируют органические вещества своего тела из более простых, неорганических

2. нуждаются в готовых органических веществах

3. в зависимости от окружающих условий, могут синтезиро-

вать органические вещества, либо использовать готовые

4. строят свое тело из готовых органических соединений

Основные этапы энергетического обмена гетеротрофных организмов и место осуществления каждого этапа

1. подготовительный-цитоплазма: гликолиз-митохондрии:

2. гликолиз-гиалоплазма, дыхание-митохондрии

Подготовительный-органы пищеварения, гликолиз-гиалоп-

Лазма, дыхание-митохондрии

4. брожение-гиалоплазма, дыхание-пластиды

5. подготовительный-хлоропласты, брожения-глалоплазма, дыхание-митохондрии

В потоке информации клетки участвуют

2. макромолекулы, переносящие информацию в цитоплазму

3. цитоплазматический аппарат транскрипции

4. все органеллы клетки

5.)1, 2, 3

119. О вырожденности кода ДНК свидетельствует то, что

1. кодируя один полипептид, кодоны следуют без знаков препинания

2. кодоны следуют в том же порядке, что и остатки аминокислот, кодируемые ими

Положение конкретной аминокислоты в молекуле полипептида может быть обозначено в ДНК при помощи одного из нескольких кодонов синонимов

код ДНК универсален

5. кодовый триплет транслируется всегда целиком

120. Код ДНК неперекрывающийся, так как

Кодируя один полипептид, кодоны следуют без знаков препинания, но кодовый триплет транслируется всегда целиком

2. кодоны следует в том же порядке, что и остатки аминокислот, кодируемые ими

3. положение конкретной аминокислоты в молекуле полипептида может быть обозначено в ДНК при помощи одного из нескольких кодонов синонимов

код ДНК универсален

5. некоторые аминокислоты кодируются несколькими триплетами

121. В пептидальном участке рибосомы во время трансляции происходит

1. прикрепления т-РНК с активированными аминокислотами

Наращивание полипептида

3. синтез АТФ

4. перекодирование информации

5. прикрепление молекулы и-РНК

122. В аминоцильном участке рибосомы во время трансляции происходит

2.4 Строение эукариотической клетки

Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60–70% полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.

Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.

У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки.

Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление фагоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.

2.2 — Схема строения эукариотической клетки:

1 – клеточная стенка; 2 – цитоплазматическая мембрана;

3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть;

6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы;

9 – лизосомы; 10 – вакуоли

Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры.

Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК.

Лекция 3. Строение клетки

В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.

Основной функцией ядра является участие в размножении клетки.

Это носитель наследственной информации.

В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.

Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую.

На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.

Эндоплазматическая сеть (ЭС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки.

Бывает гладкой и шероховатой. На поверхности шероховатой ЭС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.

Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).

В лизосомах сосредоточены гидролитические ферменты.

Здесь происходит расщепление биополимеров (белков, жиров, углеводов).

Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.

Вопросы для самопроверки

Какие вопросы изучает систематика как наука?

2. Какие задачи ставятся при классификации микроорганизмов?

3. Какие таксономические категории Вам известны?

4. Что такое «номенклатура микроорганизмов»?

5. Как делятся микроорганизмы в зависимости от структуры их клеточной организации?

1. Какие типы клеточной организации Вы знаете?

2. Какие микроорганизмы называются ценоцитными?

Приведите примеры таких микроорганизмов.

7. Назовите основные компоненты прокариотической клетки.

8. Чем отличаются грамположительные и грамотрицательные бактерии?

Назовите химический состав и функции нуклеоида. В каких клетках имеется нуклеоид?

10. Какую функцию в клетке выполняют рибосомы? Чем отличаются рибосомы прокариот от рибосом эукариот?

11. Каковы состав и функции клеточной стенки эукариот?

12. Какие существуют отличия в строении прокариотической и эукариотической клеток?

13. Каков химический состав и функции цитоплазматической мембраны прокариотической и эукариотической клеток?

Какую роль выполняют лизосомы в эукариотической клетке?

15. Привести примеры известных Вам одноклеточных организмов.

16. Дать определение понятиям «фагоцитоз» и «пиноцитоз».

Литература

1. Шлегель Г.

Общая микробиология. – М.: Мир, 1987. – 500 с.

2. Мудрецова-Висс К.А., Кудряшова А.А., Дедюхина В.П. Микробиология, санитария и гигиена – Владивосток: Изд-во ДВГАЭУ, 1997. – 312 с.

3. Асонов Н.Р. Микробиология.

— 3 изд., перераб. и доп. – М.: Колос, 1997. – 352 с.

4. Елинов Н.П. Химическая микробиология – М.: Высшая школа, 1989.–448 с.

Общий план строения эукариотической клетки

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляетплазмалемма (клеточная мембрана) иуглеводно-белковая поверхностная структура.

1. Плазмалемма .

2. Углеводно-белковая поверхностная структура.

Структурная организация эукариотической клетки Схема строения эукариотической

Животные клетки имеют небольшую белковую прослойку(гликокаликс ) . У растений поверхностная структура клетки – клеточная стенка состоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит из гиалоплазмы (основное вещество цитоплазмы), органоидов и включений.

Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений, объединяет все структуры клетки в единое целое.

Митохондрии имеют две мембраны: наружную гладкую внутреннюю со складками – кристами. Внутри между кристами находитсяматрикс , содержащий молекулы ДНК, мелкие рибосомы и ферменты дыхания. В митохондриях происходит синтез АТФ. Митохондрии делятся делением надвое.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты. Делятся делением надвое.

Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку.

Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной. Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II. Хромопласты придают разным органам растения окраску.

III. Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различаютнегранулярную (гладкую) и гранулярную (шероховатую) ЭПС. На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка. Функции ЭПС: транспортная, концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию, в растительных он является центром синтеза полисахаридов.

Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7. Лизосомы сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

Клеточный центр управляет процессами деления клеток.

9. Микротрубочки и микрофиламенты в формируют клеточный скелет.

Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества.

Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы ). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина.

При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).

Строение клетки эукариот (ядерных)

Строение клетки эукариот (ядерных)

К эукариотам (от греч. эу – полностью, хорошо) относятся клетки растений, грибов, животных. Среди эукариот есть одноклеточные, колониальные и многоклеточные формы. Клетки этих организмов имеют хорошо сформированное ядро. Некоторые зрелые клетки (ситообразные трубки высших растений, эритроциты и тромбоциты большинства млекопитающих) в процессе эволюции его утратили.

Каждая клетка состоит из поверхностного аппарата, цитоплазмы и внутриклеточных структур. Поверхностный аппарат клетки образован плазматической мембраной, надмембранными и подмембранными структурами. Через него происходит обмен веществ между клеткой и средой обитания. Поверхностный аппарат клеток разных организмов отличается. У клеток бактерий, растений и грибов в состав надмембранного комплекса входит клеточная стенка , а животных клеток – гликокаликс .

Плазматическая мембрана

Клетки как прокариот, так и эукариот покрыты плазматической мембраной (от лат. membrana – кожура, пленка), 6-10 нм толщиной. Она ограничивает цитоплазму и защищает ее от воздействий окружающей среды. Ее основная функция – транспорт веществ. Плазматическая мембрана определяет размеры клеток. В клетке нет открытых мембран со свободными концами. На протяжении жизни клетки мембрана остается постоянной, но все ее составляющие постоянно обновляются.

Кроме того, различают внутренние мембраны. Ими внутренняя среда клеток разделена на отдельные функциональные участки – компартменты . Одна из функций компартментов – это обеспечение возможности одновременного осуществления многих несовместимых биохимических процессов. Разнообразные мембранные структуры были выявлены с помощью световой и электронной микроскопии. Крупнейшими компартментами являются ядро, митохондрии и т. п.

В биологических мембранах происходят процессы, связанные с преобразованием энергии, формированием и передачей возбуждения, восприятием и передачей информации, явлениями иммунитета и т. п. У многоклеточных организмов плазматические мембраны обеспечивают межклеточные контакты.

Плазматическая мембрана эукариотических клеток в определенных местах составляет единое целое с мембранами эндоплазматической сети. Мембраны эндоплазматической сети непосредственно связаны с мембранами комплекса Гольджи. С помощью комплекса Гольджи воссоздаются клеточные структуры (лизосомы и т. п.). Лизосомы сливаются с пиноцитозными или фагоцитозными пузырьками. Последние возникают из плазматической мембраны. Клетка делится на большое количество ячеек. Они играют важную роль в ходе процессов обмена.

После деления клетки из мембран эндоплазматической сети образуется ядерная мембрана. Внешняя ядерная мембрана является продолжением мембраны эндоплазматической сети.

Таким образом, единая мембранная система клетки составляет комплекс мембранных структур. Эти структуры связаны между собою пространственно и функционально.

Химический состав мембран

Все клеточные мембраны и эукариот, и прокариот имеют подобные химический состав и принцип организации. Но соотношения химических компонентов, детали строения могут отличаться, в зависимости от типа мембран и их функций.

Основные химические компоненты мембраны: липиды, белки и некоторое количество углеводов.

Белки являются основным функциональным компонентом биологических мембран. От сухой массы мембран составляют в среднем до 60 %. Они образуют комплексы с липидами. В строении мембран различают поверхностные и внутренние белки.

Поверхностные белки составляют около 30 % от общего количества мембранных белков. Они содержатся на внешней и внутренней поверхностях мембран. Поверхностные белки связаны с поверхностями мембран непосредственно или через двухвалентные катионы, преимущественно Са 2+ и Mg 2+ электрическими силами. При разрушении клетки легко отделяются от мембран.

Внутренние белки составляют почти 70 % общего количества мембранных белков. Они погружены на разную глубину в двойной слой липидов. Иногда пронизывают мембрану насквозь. Такие белки связывают обе поверхности мембраны.

По биологической роли мембранные белки делят на ферментативные, защитные, рецепторные (сигнальные белки) и структурные.

Разные типы мембран имеют определенный набор ферментативных белков. На мембранах содержатся некоторые ферменты, которые принимают участие в регуляции обмена веществ, преобразовании энергии и т. п.

Некоторые мембранные белки (антитела и т. п.) выполняют защитную функцию.

Структурные белки принимают участие в стабилизации мембран.

Рецепторные белки способны в ответ на воздействие различных факторов окружающей среды изменять свою пространственную структуру и таким образом передавать сигнал в клетку.

Липиды составляют от сухой массы мембран 40 %. Преобладают среди липидов фосфолипиды (до 80 %). Фосфолипиды в своем составе имеют остатки фосфорной и серной кислот, которые образуют гидрофильные головки. Неполярная часть представлена остатками жирных кислот.

Углеводы не входят самостоятельно в состав мембран. Они образуют комплексы с белками или липидами: гликопротеиды или гликолипиды соответственно. Локализованы на внешней стороне внешней мембраны.

Структура биологических мембран

Общепринятая модель биологических мембран как прокариот, так и эукариот – жидкостно-мозаичная . Название происходит от того, что около 30 % липидов тесно связаны с внутренними белками, а остальные находятся в жидком состоянии. Молекулы липидов образуют двойной слой, где полярные гидрофильные остатки фосфорной кислоты (головки) обращены к внешней и внутренней сторонам мембраны, к жидкой среде, неполярные хвосты – вглубь. Молекулы белков находятся или с внешней, или с внутренней стороны слоя липидов, или погружены в него. Сверху мембрана напоминает мозаику, которая образована полярными головками липидов и поверхностными и внутренними белками.

Мембраны способны волнообразно двигаться, чем способствуют передвижению макромолекул. Поскольку входящие в состав мембран молекулы способны перемещаться, мембраны при незначительных повреждениях быстро восстанавливаются, могут легко сливаться одна с другой, растягиваться и сжиматься.

Между молекулами белков или их частями часто существуют поры, или канальцы, заполненные водой.

Поверхность мембраны неоднородная, чем обусловлены отличительные физиологические свойства разных участков. Она образует отростки, вгибы, складки, микроворсинки, которые намного увеличивают внешнюю и внутреннюю поверхности клетки.

Транспорт веществ через мембрану

Транспорт может быть как пассивным (без затрат энергии), так и активным (с затратами энергии).

Пассивный

Пассивный транспорт происходит посредством диффузии, осмоса, транспортных белков. Процессы пассивного и активного транспорта присущи всем типам мембран.

Диффузия – это процесс взаимопроникновения молекул. Происходит взаимопроникновение благодаря различию в концентрации вещества извне и внутри клетки по градиенту концентрации . Вещества через определенные участки или поры проникают через мембрану вследствие хаотичного теплового движения молекул без затрат энергии. Диффузия зависит от проницаемости мембраны. Процесс пассивного транспорта обеспечивает избирательную проницаемость веществ через мембраны. Полупроницаемостъ мембраны – это способность выборочно пропускать в клетку и выводить из нее разные молекулы и ионы. При этом, как и при диффузии, вещества перемещаются благодаря градиенту концентрации почти без затрат энергии.

Осмос – это диффузия воды через полупроницаемую мембрану из области с меньшей концентрацией растворенного вещества в область с большей концентрацией.

Существует несколько механизмов пассивного транспорта с помощью белков: 1) с участием подвижных белков-переносчиков, которые присоединяют транспортируемое вещество на одной поверхности мембраны, а освобождают на другой; 2) за счет изменения конфигурации внутренних белков, которые пересекают мембрану. Некоторые белки могут вращаться вокруг своей оси.

Фиксированные в мембране молекулы переносчиков могут образовывать цепь, и определенное вещество последовательно перемещается от одного звена этой цепи к другому.

Активный

Активный транспорт связан с затратами энергии, источником которой могут быть или различие концентрации ионов, которые возникают с обеих сторон мембраны, или энергия, которая высвобождается при расщеплении молекул АТФ.

На перенос веществ через плазматическую мембрану влияет различие концентрации ионов калия и натрия во внутренней и внешней средах клетки. Внутри живой клетки концентрация ионов калия всегда выше, чем извне, а ионов натрия – наоборот. Возникает градиент концентрации, который ведет к поступлению в клетку посредством диффузии ионов натрия, а ионов калия – из нее. Концентрация ионов в клетке и вне ее никогда не выравнивается, поскольку существует особый механизм, который выводит ионы натрия из клетки и вводит туда ионы калия. Такой механизм называется калиево-натриевым насосом . Процесс происходит с затратой энергии. Концентрация этих ионов с обеих сторон плазматической мембраны выравнивается в мертвых или замороженных клетках. Благодаря калиево-натриевому насосу облегчается энергетический негатив – против градиента концентрации – транспорт низкомолекулярных соединений (глюкозы, аминокислот и т. п.).

К активному транспорту относятся цитозы. Выведение веществ из клетки называется экзоцитозом , введение их в клетку – эндоцитозом . Известно два вида эндоцитоза: фагоцитоз и пиноцитоз. При этом образуются пузырьки, окруженные мембраной, диаметром 0,01-2 мкм. Вещества в этих творениях сливаются или взаимодействуют с разнообразными мембранными структурами.

Фагоцитоз (от греч. фагос – пожирать) – активное поглощение твердых объектов, частичек органических веществ, мелких клеток и т. п. Фагоцитоз наблюдается у клеток одноклеточных или многоклеточных животных, которые лишены клеточной стенки. Одноклеточные животные (амебы, фораминиферы и т. п.) и некоторые многоклеточные (клетки гидры и т. п.) питаются благодаря фагоцитозу. Лейкоциты хордовых с помощью фагоцитоза выполняют защитную функцию.

Процесс фагоцитоза происходит в несколько этапов: 1) сближение клетки с объектом, который можно захватить; 2) образование фагосомы – плазматическая мембрана окутывает объект и проталкивает его в цитоплазму; 3) переваривание объекта (поступают лизосомы, содержащие гидролитические ферменты). Непереваренные остатки выводятся из клетки.

Пиноцитоз (от греч. пино – пью, вбираю) – это поглощение клеткой жидкостей вместе с растворенными в них соединениями. Происходит благодаря вгибанию мембраны. Наблюдается у клеток разнообразных организмов.

Все живые организмы в зависимости от наличия ядра можно условно подразделить на две большие категории: прокариоты и эукариоты. Оба эти термина ведут свое происхождение от греческого «karion» - ядро.

Те организмы, которые не имеют ядра, называют прокариотами - доядерными организмами с ядерным веществом в виде включений. Строение несколько иное. В отличие от прокариотов, эукариоты имеют оформленное ядро - это и есть их главное отличие. К прокариотам относят бактерии, цианобактерии, риккетсии и другие организмы. К эукариотам можно отнести представителей Растения и Животные.

Строение различных ядерных организмов сходно. Главные их составляющие - ядро и цитоплазма, которые вместе составляют протопласт. Цитоплазма представляет собой полужидкое основное вещество, или, как ее еще называют, гиалоплазму, в которой находятся клеточные структуры - органеллы, выполняющие различные функции. С внешней стороны цитоплазма окружена плазматической мембраной. Растительные и имеют помимо плазматической мембраны жесткую клеточную оболочку. Цитоплазма и грибов содержит вакуоли - пузырьки, которые заполнены водой с различными растворенными в ней веществами. Помимо этого, в клетке находятся включения в виде запасных питательных веществ или конечных продуктов обмена. Особенности строения эукариотической клетки обусловлены функциями включений, находящихся в клетке.

Строение и функции эукариотической клетки :

  • плазматическая мембрана - это двойной липидный слой с погруженными в него белками. Основная функция плазматической мембраны - обмен веществ между самой клеткой и окружающей средой. За счет плазматической мембраны осуществляется и контакт между двумя соседними клетками.
  • ядро - этот клеточный элемент имеет двумембранную оболочку. Основная - сохранение наследственной информации - дезоксирибонуклеиновой кислоты. Благодаря ядру регулируется клеточная активность, передается генетический материал дочерним клеткам.
  • митохондрии - эти органеллы присутствуют только в растительной и животной клетках. Митохондрии, как и ядро, имеют две мембраны, между которыми есть внутренние складки - кристы. В митохондриях содержится кольцевая ДНК, рибосомы, множество ферментов. Благодаря этим органеллам осуществляется кислородный этап дыхания клетки (синтезируется аденозинтрифосфорная кислота).
  • пластиды - имеются лишь в растительной клетке, поскольку их основная функция - осуществление фотосинтеза.
  • (ретикулум) - это целая система уплощенных мешочков - цистерн, полостей и трубочек. На эндоплазматическом ретикулуме (шероховатом) располагаются важные органеллы - рибосомы. В цистернах сети изолируются и дозревают белки, которые также транспортируются самой сетью. На мембранах гладкого ретикулума осуществляется синтез стероидов и липидов.
  • комплекс Гольджи - система плоских одномембранных цистерн и пузырьков, прикрепленных к расширенным концам цистерн. Функция комплекса Гольджи - накопление и преобразование белков и липидов. Здесь же образуются секреторные пузырьки, выводящие вещества за пределы клетки. Строение эукариотической клетки таково, что клетка имеет собственный механизм выделения отработанных веществ.
  • лизосомы - одномембранные пузырьки, которые содержат гидролитические ферменты. Благодаря лизосомам клетка переваривает поврежденные органеллы, отмершие клетки органов.
  • рибосомы - бывают двух типов, но основная их функция - сборка молекул белка.
  • центриоли - это система микротрубочек, которые построены из белковых молекул. Благодаря центриолям образуется внутренний скелет клетки, она может поддерживать свою постоянную форму.

Строение эукариотической клетки сложнее, чем клетки прокариота. Благодаря наличию ядра, эукариоты имеют возможность передавать генетическую информацию, тем самым обеспечивая постоянство своего вида.

1. Основы клеточной теории

2. Общий план строения прокариотической клетки

3. Общий план строения эукариотической клетки

1. Основы клеточной теории

Впервые клетку обнаружил и описал Р. Гук (1665). В XIX в. в трудах Т. Шванна, М. Шлейдена были заложены основы клеточной теории строения организмов. Современную клеточную теорию можно выразить в следующих положениях: все организмы состоят из клеток; клетка является элементарной структурной, генетической и функциональной единицей живого. Развитие всех организмов начинается с одной клетки, поэтому она является элементарной единицей развития всех организмов. В многоклеточных организмах клетки специализируются на выполнении определенных функций.

В зависимости от структурной организации выделяют следующие формы жизни: доклеточные (вирусы) и клеточные. Среди клеточных форм исходя из особенностей организации клеточного наследственного материала выделяют про- и эукариотические клетки.

Вирусы – это организмы, имеющие очень малые размеры (от 20 до 3000 нм). Их жизнедеятельность может осуществляться только внутри клетки организма хозяина. Тело вируса образовано нуклеиновой кислотой (ДНК или РНК), которая содержится в белковой оболочке – капсиде, иногдакапсид покрыт мембраной.

2. Общий план строения прокариотической клетки

Основные компоненты прокариотической клетки : оболочка, цитоплазма. Оболочка состоит из плазмалеммы и поверхностных структур (клеточная стенка, капсула, слизистый чехол, жгутики, ворсинки).

Плазмалемма имеет толщину 7,5 нм и с наружной части образована слоем белковых молекул, под которым находятся два слоя молекул фосфолипидов, а далее располагается новый слой молекул белка. В плазмалемме имеютсяканалы, выстланные белковыми молекулами, через эти каналы осуществляется транспорт различных веществ, как в клетку, так и из нее.

Основной компонент клеточной стенки – муреин. В него могут быть встроены полисахариды, белки (антигенные свойства), липиды. Придает клетке форму, препятствует ее осмотическому набуханию и разрыву. Через поры легко проникают вода, ионы, мелкие молекулы.

Цитоплазма прокариотической клетки выполняет функцию внутренней среды клетки, в ней находятся рибосомы, мезосомы, включения и молекула ДНК.

Рибосомы – органоиды бобовидной формы, состоят из белка и РНК более мелкие (70S-рибосомы), чем у эукариот. Функция – синтез белка.

Мезосомы – система внутриклеточных мембран образующие складчатые впячивания, содержат ферменты дыхательной цепи (синтез АТФ).

Включения : липиды, гликоген, полифосфаты, белки, запасные питательные вещества

Молекула ДНК. Одна гаплоидная кольцевая двухцепочечная суперконденсированная молекула ДНК. Обеспечивает хранение, передачу генетической информации и регуляцию жизнедеятельности клетки.

3. Общий план строения эукариотической клетки

Типичная клетка эукариот состоит из трех составных частей – оболочки, цитоплазмы и ядра. Основу клеточной оболочки составляетплазмалемма (клеточная мембрана) иуглеводно-белковая поверхностная структура.

1. Плазмалемма эукариот отличается от прокариотической меньшим содержанием белков.

2. Углеводно-белковая поверхностная структура. Животные клетки имеют небольшую белковую прослойку (гликокаликс) . У растений поверхностная структура клетки –клеточная стенка состоит из целлюлозы (клетчатки).

Функции клеточной оболочки: поддерживает форму клетки и придает механическую прочность, защищает клетку, осуществляет узнавание молекулярных сигналов, регулирует обмен веществ между клеткой и средой, осуществляет межклеточное взаимодействие.

Цитоплазма состоит изгиалоплазмы (основное вещество цитоплазмы),органоидов и включений. В гиалоплазме содержатся 3 типа органоидов:

двумембранные (митохондрии, пластиды);

одномембранные (эндоплазматическая сеть (ЭПС), аппарат Гольджи, вакуоли, лизосомы);

немембранные (клеточный центр, микротрубочки, микрофиламенты, рибосомы, включения).

1. Гиалоплазма представляет собой коллоидный раствор органических и неорганических соединений. Гиалоплазма способна к перемещению внутри клетки – циклозу . Основные функции гиалоплазмы: среда для нахождения органоидов и включений, среда для протекания биохимических и физиологических процессов, объединяет все структуры клетки в единое целое.

2. Митохондрии («энергетические станции клеток»). Наружная мембрана гладкая, внутренняя имеютскладки – кристы. Между внешней и внутренними мембранами находится матрикс . В матриксе митохондрий содержатся молекулы ДНК, мелкие рибосомы и различные вещества.

3. Пластиды характерны для растительных клеток. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

I. Хлоропласты – зеленые пластиды, в которых осуществляется фотосинтез. Хлоропласт имеет двухмембранную оболочку. Тело хлоропласта состоит из бесцветногобелково-липидного стромы, пронизанной системой плоских мешочков (тилакоидов) образованных внутренней мембраной.Тилакоиды образуютграны. В строме содержатся рибосомы, крахмальные зерна, молекулы ДНК.

II . Хромопласты придают разным органам растения окраску.

III . Лейкопласты запасают питательные вещества. Из лейкопластов возможно образование хромопластов и хлоропластов.

4. Эндоплазматическая сеть представляет собой разветвленную систему трубочек, каналов и полостей. Различаютнегранулярную (гладкую) и гранулярную (шероховатую) ЭПС. На негранулярной ЭПС находятся ферменты жирового и углеводного обмена (происходит синтез жиров и углеводов). Награнулярной ЭПС располагаются рибосомы, осуществляющие биосинтез белка. Функции ЭПС: механическая и формообразующая функции; транспортная; концентрация и выделение.

5. Аппарат Гольджи состоит из плоских мембранных мешочков и пузырьков. В животных клетках аппарат Гольджи выполняет секреторную функцию. В растительных он является центром синтеза полисахаридов.

6. Вакуоли заполнены клеточным соком растений. Функции вакуолей: запасание питательных веществ и воды, поддержаниетургорного давления в клетке.

7 . Лизосомы – мелкие органоиды сферической формы, образованы мембраной, внутри которой содержатся ферменты, гидролизующие белки, нуклеиновые кислоты, углеводы, жиры.

8. Клеточный центр. Функцией клеточного центра является управление процессом деления клеток.

9. Микротрубочки и микрофиламенты в совокупности формируют клеточный скелет животных клеток.

10. Рибосомы эукариот более крупные (80S).

11. Включения – запасные вещества, ивыделения – только в растительных клетках.

Ядро – важнейшая часть эукариотической клетки. Оно состоит из ядерной оболочки, кариоплазмы, ядрышек, хроматина.

1. Ядерная оболочка по строению аналогична клеточной мембране, содержит поры. Ядерная оболочка защищает генетический аппарат от воздействия веществ цитоплазмы. Осуществляет контроль за транспортом веществ.

2. Кариоплазма представляет собой коллоидный раствор, содержащий белки, углеводы, соли, другие органические и неорганические вещества. В кариоплазме содержатся все нуклеиновые кислоты: практически весь запас ДНК, информационные, транспортные и рибосомальные РНК.

3. Ядрышко – сферическое образование, содержит различные белки, нуклеопротеиды, липопротеиды, фосфопротеиды. Функция ядрышек – синтез зародышей рибосом.

4. Хроматин (хромосомы). В стационарном состоянии (время между делениями) ДНК равномерно распределены в кариоплазме в виде хроматина. При делении хроматин преобразуется в хромосомы.

Функции ядра: в ядре сосредоточена информация о наследственных признаках организма (информативная функция); хромосомы передают признаки организма от родителей к потомкам (функция наследования); ядро согласует и регулирует процессы в клетке (функция регуляции).