Хроматографические методы и их использование в идентификации загрязнителей природных сред. Возможности масс-спектрометрии

Возможности масс-спектрометрии

По масс-спектру можно определить молекулярную массу вещества. Это необходимо для установления молекулярной формулы вещества (брутто-формула). Масса атома, измеренная с высокой точностью, отличается от массового числа. Так, для CO 2 и C 3 H 8 массовое число равно 44, но их точные относительные молекулярные массы равны соответственно 43,989828 и 44,062600, т.е. разница составляет 0,072772 а.е.м. Масс-спектрометр позволяет разделить пучки ионов CO 2 + и C 3 H 8 + , когда они получаются одновременно.

Определение атомного состава по точному значению массы проводится с использованием таблиц точных масс для различных соотношений числа атомов C, H, O и N как наиболее распространённых элементов. Точное измерение масс не заменяет элементного анализа. Оба метода взаимно дополняют друг друга.

При исследовании масс-спектра дополнительно к определению типа молекулярного иона (М + ) измеряют пики и для изотопных ионов, включающих более легкие или более тяжелые изотопы (с массовыми числами М ± 1, М ± 2, М ± 3 и т.п.). Одновременное присутствие нескольких изотопов в молекуле маловероятно, т.к. естественная распространенность более тяжелых изотопов C, H, O и N незначительна. Например, 13 C: 12 C = 1×10 -2 ; 2 H: 1 H = 1,6×10 -4 ; 15 N: 14 N = 4×10 -3 и т.д. Однако для хлора 35 Cl: 37 Cl = 3:1; для брома 79 Br: 81 Br = 1:1. Следовательно, в масс-спектре наряду с ионом М + будет присутствовать ион (М+1) + с интенсивностью, пропорциональной распространенности изотопов. В широко используемых справочных таблицах приводятся обычно соотношения интенсивностей пиков молекулярных ионов с массовыми числами М+1 и М+2.

Максимальное значение m/z в масс-спектре вещества может иметь молекулярный ион (М + ), масса которого равна молекулярной массе исследуемого соединения. Интенсивность пика молекулярного иона (М +) тем выше, чем этот ион стабильнее.

Практически редко удается установить полную структуру соединения только на основе масс-спектра. Наиболее эффективно совместное использование нескольких физико-химических методов. Масс-спектрометрия, особенно в сочетании с хроматографией, является одним из наиболее информативных методов исследования структуры вещества (хроматомасс-спектрометрия).

Таким образом, возможности метода: определение молекулярной массы и брутто-формул веществ; установление строения вещества по характеру образующихся фрагментов; количественный анализ смесей, включая определение микропримесей; определение степеней чистоты вещества; определение изотопного состава вещества.

Рассмотрим в качестве примера масс-спектр этанола (рис. 2). Обычно спектр представляют в виде гистограмм.

Рис. 2. Масс-спектр этанола

В современных приборах обработка интенсивности электрических импульсов, соответствующих пикам с различающимися значениями m/z, производится с помощью компьютера.

Масс-спектры приводят в такой записи: указывают значения m/z, а в скобках относительную интенсивность (%). Например, для этанола:

С 2 H 5 OH-масс-спектр (m/z): 15(9), 28(40), 31(100), 45(25), 46(14).

Вопросы для собеседования

1. Теоретические основы метода.

2. Энергия ионизации. Типы фрагментации.

3. Принципиальная схема масс-спектрометра.

4. Методы ионизации: электронный удар, химическая ионизация и др.

5. Закономерности фрагментации молекулярного иона.

6. Возможности масс-спектрометрии.

Тестовые задания

1. Типы фрагментации молекулярного иона:

а). Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с четными значениями отношения m/z.

Перегруппировка - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются нечетным значением отношения m/z.

б) Перегруппировка - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с нечетными значениями отношения m/z.

Диссоциация - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются четным значением отношения m/z.

в) Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал, образуются фрагменты с нечетными значениями отношения m/z.

Перегруппировка - изменение последовательности связей, образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула, фрагменты характеризуются четным значением отношения m/z.

2. Возможности метода масс-спектрометрии:

а) определение молекулярной массы и брутто-формул веществ, количественный анализ смесей;

б) установление строения вещества по характеру образующихся фрагментов, определение изотопного состава вещества;

в) определение молекулярной массы и брутто-формул веществ; установление строения вещества по характеру образующихся фрагментов; количественный анализ смесей, включая определение микропримесей; определение степеней чистоты вещества; определение изотопного состава вещества.

3. Выберите правильный ответ:

а) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С меньше; в ароматических производных наиболее вероятен разрыв β-связи с образованием перегруппировочного тропилиевого иона;

а) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С больше; в ароматических производных наиболее вероятен разрыв β-связи с образованием перегруппировочного тропилиевого иона;

в) Вероятность разрыва связи С-Н уменьшается с увеличением цепи углеводорода; энергия разрыва связи С-С меньше; в ароматических производных наиболее вероятен разрыв a-связи с образованием перегруппировочного тропилиевого иона;


1. Казин В.Н., Урванцева Г.А. Физико-химические методы исследования в экологии и биологии: учебное пособие (гриф УМО) / В.Н. Казин, Г.А. Урванцева; Яросл. гос. ун-т им. П.Г. Демидова. - Ярославль, 2002. - 173 с.

2. Под. ред. А.А. Ищенко. Аналитическая химия и физико-химические методы анализа / Н.В. Алов и др. - М.: Издательский центр «Академия», 2012. (в 2-х томах, 1 том -352 с., 2 том - 416 с.) - (Сер. Бакалавриат)

3. Васильев В.П. Аналитическая химия. - кн. 2. Физико-химические методы анализа. М.: Министерство образования РФ. 2007. 383 c.

4. Харитонов Ю.Я. Аналитическая химия, кн. 1, кн. 2, Высшая школа, 2008.

5. Отто М. Современные методы аналитической химии (в 2-х томах). Москва: Техносфера, 2008.

6. Под ред. Ю.А. Золотова. Основы аналитической химии, Высш.шк., 2004.

7. Васильев В.П. Аналитическая химия. - кн. 2. Физико-химические методы анализа. М.: Дрофа, 2009.

8. Казин В.Н.Физико-химические методы анализа: лабораторный практикум / В.Н. Казин, Т.Н. Орлова, И.В. Тихонов; Яросл. гос. ун-т им. П.Г. Демидова.- Ярославль: ЯрГУ, 2011. – 72 с.

Что происходит с образцами крови, которую вы сдаете на клинический анализ? Сколько весит ваш гемоглобин? Каким образом ученые вообще взвешивают молекулы - мельчайшие частицы вещества, которые невозможно увидеть или потрогать? Обо всем этом в рамках рубрики «Просто о сложном» T&P рассказала студентка 5-го курса кафедры химической физики ФМХФ, сотрудница лаборатории ионной и молекулярной физики МФТИ Екатерина Жданова.

Очень часто методы исследований интересуют лишь специалистов в конкретных областях и остаются в тени более фундаментальных проблем, например происхождения жизни или принципов работы человеческого сознания. Тем не менее для поиска ответа на «главный вопрос жизни, Вселенной и всего остального» сначала необходимо научиться отвечать на вопросы более простые. Например, как взвесить молекулу? 

Обычные весы тут вряд ли помогут: масса молекулы метана - около 10^(-23) грамм. Молекула гемоглобина, крупного и сложного белка, весит в несколько раз больше - 10^(-20) грамм. Ясно, что необходим какой-то иной подход к проблеме, ведь привычные нам измерительные приборы к ней не применимы. Надо также понимать, что, взвешивая в магазине яблоки или становясь на весы после тренировок, мы на самом деле измеряем силу, действующую на прибор - весы. Затем уже происходит пересчет в привычные нам единицы - граммы и килограммы.


Но как же взвесить молекулу? Здесь природа оставила нам лазейку. Оказывается, заряженные частицы «чувствуют» присутствие электрического и магнитного поля и изменяют траекторию и характер своего движения. На заряженные частицы также действуют силы, величину которых можно пересчитать в отношении массы к заряду.
Этот метод сегодня довольно популярен и называется масс-спектрометрия. Первооткрывателем масс-спектрометрии считается сэр Дж. Дж. Томсон, нобелевский лауреат по физике. Он обратил внимание на то, что заряженные частицы движутся в магнитном поле по параболическим траекториям, пропорциональным отношению их массы к заряду.

Схема работы масс-спектрометра состоит из нескольких этапов. Прежде всего анализируемое вещество должно пройти ионизацию. Затем оно попадает в систему ионного транспорта, которая должна доставить заряженные частицы в масс-анализатор. В масс-анализаторе как раз происходит разделение ионов в зависимости от отношения массы к заряду. В завершение ионы попадают на детектор, данные с которого анализируются с помощью специального программного обеспечения. Полученная таким образом картинка представляет собой спектр, то есть распределение частиц. Одна из осей этого графика - отношения массы к заряду, вторая - интенсивность. Каждый из пиков на таком графике будет характерным для ионов конкретного вещества, поэтому попадание в прибор посторонних веществ, например воздуха, может привести к искажениям результатов. Чтобы избежать этого, применяется вакуумная система.

Сравнительно простая физическая концепция данного метода требует ряда нетривиальных инженерных решений. Как ионизировать молекулы? Каким способом создавать электромагнитное поле? 
Атомы и молекулы электрически нейтральны, поэтому для проведения масс-спектрометрических измерений необходимо их ионизировать, то есть оторвать электроны с внешних атомных орбиталей или добавить протон. Важную роль играет тип образца, с которым предстоит работать. Для исследования неорганических веществ - металлов, сплавов, горных пород - необходимо использовать одни методы, для органических веществ подходят другие. Очень многие органические вещества (такие как ДНК или полимеры) сложно испарить, то есть перевести в газ, без разложения, а это значит, что исследования живой ткани или биологических образцов требуют применения специальных методов. Кроме того, при ионизации молекулы могут распадаться на отдельные фрагменты. Так мы снова встаем перед вопросом: что именно мы собираемся измерить? Массу всей молекулы или массу фрагментов? И то и другое важно. Более того, измерив массу целой молекулы, исследователи часто специально дробят ее на куски. Так, определив массу структурных элементов белка, мы вместе с тем определяем и их количество, что позволяет нам делать выводы о его химическом составе и структуре.

Все это говорит о разнообразии существующих масс-спектрометров, каждый из которых применяется для решения задач в конкретной области. Этот метод практически незаменим в тех случаях, когда ученым необходимо определить химический состав вещества. Фармацевты применяют масс-спектрометрические эксперименты при разработке лекарств, исследованиях фармакокинетики (то есть биохимических процессов, происходящих в организме при принятии лекарства) и метаболизма. Ученые-биологи используют масс-спектрометрию для анализа белков, пептидов и нуклеиновых кислот. Кроме того, если мы хотим проверить качество воды или продуктов питания, то нам снова не обойтись без этого метода.

Отдельная инновационная область применения масс-спектрометрии - медицинская диагностика. К развитию множества заболеваний приводят структурные изменения белков нашего организма: обычно они классифицируются по образованию характерного кусочка, пептида-маркера. Если вовремя определить такую мутацию, то появляется возможность лечить болезнь на ранней стадии. Кроме того, благодаря современным масс-спектрометрам становится возможным проводить исследования такого рода в режиме реального времени - например, в ходе нейрохирургической операции. Это позволяет точно определять границы между здоровой тканью и опухолью, что критически важно для хирургов.

Кажущаяся на первый взгляд сухой и узкопрофильной, масс-спектрометрия при внимательном ознакомлении оказывается удивительно богатой областью, объединяющей широкий класс приложений с необычными инженерными решениями. Наука показывает, что ответы на менее фундаментальные вопросы порой не менее интересны.

Метод основан на изучении распределения по массам ионов, образующихся при ионизации исследуемого вещества. Процесс получения масс-спектра включает несколько этапов, каждому из которых соответствует свой функциональный узел.

1. Ввод пробы (на схеме – vapor )

2. Ионизация (electron beam )

3. Ускорение ионов (potential difference )

4. Масс-анализ

5. Регистрация (photographic plate )

Система напуска обеспечивает испарение вещества и вводит его в масс-спектрометр. Как правило, для измерений достаточно 1-100 мкг вещества, но в принципе, масс-спектрометрический анализ позволяет определять до 10 -9 г вещества, что делает масс-спектрометрию одним из наиболее чувствительных методов анализа.

В случае органических соединений ионизация осуществляется методом электронного удара, т.е. пары вещества пересекают электронный пучок с энергией электронов порядка 70 эВ, в результате чего образуются исключительно катионы. Ионизированные частицы разгоняются между решетками, к которым приложено напряжение 2-3 кэВ. При этом они получают дополнительную энергию в форме кинетической энергии .

Далее частицы попадают в масс-анализатор, где начинают двигаться по искривленной траектории под действием внешнего магнитного поля (направление указано стрелками на схеме). При этом на частицы действуют две силы (F 1 – отклонения и F 2 – центробежная):

В зависимости от напряжения на детектор приходят частицы с различным отношением массы к заряду. Получаем линейчатый спектр, известный под именем «масс-спектр».

Масс-спектрометры характеризуются по крайней мере двумя параметрами: 1) массовой областью (как правило, она меньше 1000 атомных единиц); 2) точностью (как правило, четыре знака после запятой для массовых чисел меньше 100).

Измерения проводятся в вакууме (10 -7 мм рт. ст.). Сложный спектр формируется в результате образования разнообразных заряженных осколков.

Наряду с рассматриваемой схемой масс-спектрометра с отклонением в магнитном поле на практике используются и другие, в частности, квадрупольные масс-спектрометры. Разделение ионов здесь осуществляется в электрическом поле сложной формы. Также используются времяпролетные масс-спектрометры, в случае которых напряжение на сетки подается короткими импульсами, ионы приобретают одинаковую энергию и, пройдя расстояние около 2 м, приходят к детектору в разные моменты времени. Оба эти масс-спектрометра имеют меньшее разрешение, но удобны для некоторых практических измерений.

Принципы формирования масс-спектра

Результатом электронного удара является формирование молекулярных ионов. Возможен отрыв одного электрона, отрыв нескольких электронов и захват электрона с образованием аниона. Вероятность каждого из этих процессов определяется энергией электронов. Последний процесс возможен только для низкоэнергетических электронов (около 0,1 В). Отрыв нескольких электронов возможен только в случае использования высокоэнергетических электронов. При использовании электронов с энергией 70 эВ единственным процессом в системе будет являться генерация однозарядных катионов. Если энергия электронов сопоставима или превышает энергию разрыва связи (7-15 эВ), то мы будем наблюдать следующую зависимость выхода молекулярных ионов от энергии электронов.


В итоге получаем ион с заведомо избыточной энергией, которая преобразуется в колебательную, результатом чего является фрагментация молекулярных ионов с выделением незаряженных фрагментов и стабильных молекул. Характер фрагментации индивидуален для каждой молекулы и определяется особенностями её строения. При этом наличие ароматических групп и двойных связей стабилизирует молекулярный ион, а наличие разветвления приводит к увеличению эффективности фрагментации в силу высокой стабильности образующегося третичного карбониевого иона. В целом, можно лишь на основании имеющегося опыта установить ряд относительной стабильности молекулярных ионов для различных органических соединений.

ароматические > неразветвленные УВ > кетоны > амины > эфиры

Некоторые фрагменты не являются собственно частями молекулы, а являются продуктом перегруппировки, протекающей как внутримолекулярная реакция. Примером является перегруппировка МакЛафферти.

В целом, тенденция к выделению молекул, способных унести с собой избыточную энергию, является чрезвычайно ярко выраженной. Такие группы, как С 2 Н 4 , СО, Н 2 О, HCN, CS 2 , НГал отщепляются довольно часто. Порой такое отщепление провоцирует скелетные перегруппировки.

Таким образом, если речь идёт о фрагментации, её не надо понимать как массовый разрыв химических связей и их рекомбинация с образованием новых соединений. Во всех случаях это вполне определенные реакции, аналогичные химическим. Механизм этих реакций был установлен для целого ряда химических соединений в рамках специфического раздела химии высоких энергий, в данном случае, процессов, индуцированных электронным ударом.

В большинстве случаев просто рассматривают масс-спектр как индивидуальный отпечаток пальца, поскольку эти масс-спектры индивидуальны даже для изомеров и совпадают только в случае стереоизомеров .

Таким образом, структура масс-спектра определяется прежде всего ходом процессов фрагментации. Ещё одним фактором, ответственным за формирование тонкой структуры масс-спектра является изотопный состав исследуемого вещества. Так, если принять во внимание, что, например, бром представлен двумя изотопами: бром-79 (сод. 50,54%) и бром-81 (сод. 49,46%), то реально некий фрагмент RBr + распадется на дублет. Ежели фрагмент дважды бромирован, то получится триплет со средним пиком удвоенной интенсивностью, поскольку с удвоенной вероятностью будет формироваться смешанный по изотопу фрагмент. Отметим, что такая правильно симметричная картинка масс-спектра является результатом эквивалентности распространения легкого и тяжелого изотопов в природе. В случае других элементов с различным распространением в природе, интенсивность пиков изменится сообразно этой распространенности.

Углерод в составе органических соединений также представлен в виде двух изотопов, причем содержание тяжелого углерода-13 составляет 1,1%.

Пример : неопентан

В продуктах фрагментации будет полностью отсутствовать пик исходного молекулярного иона, поскольку он распадается на 100%.

Пример : п -хлоранилин

Фрагментация протекает по двум основным механизмам.

В масс-спектре будут иметься яркие проявления изотопного состава, т.к. хлор в природе представлен двумя изотопами. Пик в 7% указывает на наличие тяжелого изотопа углерода-13.

Задачи, решаемые при помощи масс-спектрометрии:

1) определение молекулярной массы

Молекулярные ионы очень ярко проявляются прежде всего в соединениях, в которых есть ароматические фрагменты. Если в исследуемом соединении эффективность фрагментации велика и выход молекулярного иона небольшой, то можно понизить энергию электронного пучка для того, чтобы подавить фрагментацию. Строго молекулярные пики давало бы использование электронов очень низкой энергии, в котором идет процесс образования анионов вместо образования катионов.

2) идентификация химического соединения

Масс-спектрометрия используется в комбинации с другими методами, особенно если природа исследуемого соединения неизвестна. Масс-спектры являются очень индивидуальными и различаются даже для изомеров. Одинаковые масс-спектры наблюдаются для стереоизомеров. Иногда масс-спектры используются как «отпечатки пальцев» (англ. fingerprint ).

3) установление механизмов химических реакций

Основной подход – отслеживание включения изотопных меток во фрагменты исследуемых молекул

Использование масс-спектрометрии позволило также установить механизм реакций фрагментации в условиях электронного удара.

Дейтерируем исходное соединение в α-положение: масс-спектр продукта сдвинется.

При дейтерировании в β-положение спектр продукта никак не изменится:

Дейтерирование в γ-положение также сдвинет спектра продукта:

4) Масс-спектрометрия является эффективным средством исследования кинетики химических реакций, особенно в тех случаях, где образуется малое количество веществ.

5) Масс-спектрометрия в силу чувствительности позволяет получить информацию о состоянии газообразных продуктов над твердой фазой.

6) Масс-спектрометрия позволяет определить потенциалы ионизации, исходя из потенциалов появления ионов.

7) Так как вклад процессов фрагментации молекул различных веществ в смеси в итоговый масс-спектр аддитивен, то масс-спектрометрия может быть использована для определения состава паров органических веществ.

До недавнего времени именно масс-спектрометрия обслуживала многие химические производства (крекинг и проч.)

  • Введение
  • Краткая история масс-спектрометрии
  • Ионизация
  • Масс-анализаторы
  • Детектор
  • Природная и искусственная изотопия
  • Масс-спектрометры для изотопного анализа
  • Скорость сканирования
  • Разрешение
  • Динамический диапазон
  • Чувствительность
  • Какие бывают масс-спектрометры

Итак, масс-спектрометры используются для анализа органических соединений и неорганических.

Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами.

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС или LC/MS по английски. Cамые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Новый класс масс-спектрометров - это гибридные приборы. Гибридными их называют потому, что они, на самом деле, включают в себя два масс-спектрометра, по крайней мере один из которых, может работать как независимый прибор. Примерами таких приборов являются масс-спектрометр ионно-циклотронного резонанса FINNIGAN LTQ FT, в котором линейная квадрупольная ионная ловушка FINNIGAN LTQ может работать как индивидуальный прибор, детектирующий ионы после МС или МСn с помощью двух вторично-электронных умножителей, так и готовить и пересылать ионы в циклотронную ячейку, выталкивая их в направлении, параллельном оси квадруполя. Также гибридным является LTQ QRBITRAP, который работает совершенно аналогично. Преимущества таких схем очевидны, линейная ловушка обладает самой высокой чувствительностью, работает в режиме тандемной масс-спектрометрии с n до 10, осуществляет разнообразные интеллектуальные функции сканирований, а масс-спектрометр ионно-циклотронного резонанса и орбитальная ловушка ионов обладают высоким разрешением и могут с высочайшей точностью измерять отношения массы к заряду ионов. Для анализа элементного состава самыми привлекательными являются масс-спектрометры с индуктивно-связанной плазмой. С помощью этого прибора определяют из каких атомов составлено вещество. Этот же метод анализа может показывать и изотопный состав. Но лучше всего измерять изотопный состав с помощью специализированных изотопных приборов, регистрирующих ионы не на одном детекторе в разное время их прихода на него, а каждый ион на своем персональном коллекторе и одновременно (так называемое параллельное детектирование).

Однако, прежде чем перейти к приборам для измерения изотопного состава, кратко остановимся на том что такое изотопы.

Природная и искусственная изотопия Атомы состоят из ядра и электронных оболочек. Свойства атомов определяются тем, сколько протонов (положительно заряженных элементнарных частиц) содержит ядро. Ядро помимо протонов содержит и нейтроны. Природа распорядилась так, что при равном количестве протонов ядро может содержать разное количество нейтронов. Атомы с одинаковым количеством протонов в ядре, но с разным количеством нейтронов отличаются по массе на одну или несколько единиц атомной массы (а.е.м.) и называются изотопами. Большинство элементов имеют определенный набор стабильных изотопов. Радиоактивные изотопы не являются стабильными и распадаются с образованием стабильных изотопов. Природная распространенность изотопов для каждого элемента известна. Некоторые элементы в природе являются моноизотопными, то есть 100 % природной распространенности приходится на один изотоп (например, Al, Sc, Y, Rh, Nb и т.д.), а другие имеют множество стабильных изотопов (S, Ca, Ge, Ru, Pd, Cd, Sn, Xe, Nd, Sa и т.д.). В технологической деятельности люди научились изменять изотопный состав элементов с целью получения каких-либо специфических свойств материалов (например, U235 имеет способность к спонтанной цепной реакции и может использоваться в качестве топлива для атомных электростанций или атомной бомбы) или использования изотопных меток (например, в медицине).

Поскольку массы изотопов отличаются, а масс-спектрометрия измеряет массу, естественно, этот метод становится самым удобным для определения изотопного состава. В то же время, информация по изотопному составу помогает идентифицировать органические соединения и позволяет дать ответы на многие вопросы начиная от определения возраста пород для геологии и кончая определением фальсификатов многих продуктов и установлением места происхождения товаров и сырья.

Масс-спектрометры для изотопного анализа. Масс-спектрометры для определения изотопного состава должны быть очень точными. Для анализа изотопного состава легких элементов (углерод, водород, кислород. сера, азот и т.д.) используется ионизация электронным ударом. В этом случае годятся все методы ввода газовой фазы, как и в органических масс-спектрометрах (DELTA Plus ADVANTAGE, FINNIGAN DELTA Plus XL и FINNIGAN МАТ253).
Для анализа изотопов более тяжелых элементов используется термоионизация (FINNIGAN TRITON TI) или ионизация в индуктивно-связанной плазме c параллельным детектированием (FINNIGAN NEPTUNE, и одноколлекторным детектированием FINNIGAN ELEMENT2).
Практически во всех типах изотопных масс-спектрометров используются магнитные масс-анализаторы.

Характеристики масс-спектрометров и масс-спектрометрических детекторов

Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость.

Скорость сканирования. Масс-анализатор, как мы показывали выше, пропускает ионы с определенным соотношением массы и заряда в определенное время (кроме многоколлекторных приборов и ионно-циклотронного резонанса, орбитальной ловушки ионов). Для того, чтобы проанализировать все ионы по отношению их массы к заряду он должен сканировать, то есть параметры его поля должны за заданный промежуток времени пройти все значения, нужные для пропускания к детектору всех интересующих ионов. Эта скорость разворачивания поля называется скоростью сканирования и должна быть как можно больше (соответственно, время сканирования должно быть как можно меньше), поскольку масс-спектрометр должен успеть измерить сигнал за короткое время, например за время выхода хроматографического пика, которое может составлять несколько секунд. При этом, чем больше масс-спектров за время выхода хроматографического пика будет измерено, тем точнее будет описан хроматографический пик, тем менее вероятно будет проскочить мимо его максимального значения, а с помощью математической обработки определить является ли он индивидуальным и «доразделить» его с помощью масс-спектрометрии.
Самым медленным масс-анализатором является магнит, минимальное время его сканирования без особой потери чувствительности составляет доли секунды (MAT 95XP). Квадрупольный масс-анализатор может разворачивать спектр за десятые доли секунды (TSQ QUANTUM), а ионная ловушка еще быстрее (POLARISQ, FINNIGAN LCQ ADVANTAGE MAX, FINNIGAN LCQ DECA XP MAX), линейная ионная ловушка - еще быстрее (LTQ) и чуть медленнее масс-спектрометр ионно-циклотронного резонанса FINNIGAN LTQ FT.
Инновационный квадрупольный хромато-масс-спектрометр FINNIGAN TRACE DSQ и его экономичный аналог FINNIGAN FOCUS DSQ способны сканировать со скоростью около 11,000 а.е.м. в секунду. Это открывает новые возможности, например, можно практически одновременно получать полный масс-спектр соединения для его однозначной идентификации и вести селективный мониторинг ионов (SIM), на несколько порядков понижающий предел обнаружения.
Любое сканирование всех перечисленных выше масс-анализаторов является компромиссным - чем больше скорость сканирования, тем меньше времени тратиться на запись сигнала на каждое массовое число, тем хуже чувствительность. Однако, для обычного анализа скорости квадрупольного анализатора или ионной ловушки достаточно. Другой вопрос, когда речь идет о высокопроизводительном анализе сложных матриц. В этом случае было бы хорошо воспользоваться сверхбыстрой хроматографией (на тонких коротких быстро прогреваемых колонках). Для такой задачи лучше всего подойдет времяпролетный масс-спектрометр (TEMPUS). Он способен записывать масс-спектры со скоростью 40,000 в секунду!

Разрешение. Наглядно разрешение (разрешающую способность) можно определить, как возможность анализатора разделять ионы с соседними массами. Очень важно иметь возможность точно определять массу ионов, это позволяет вычислить атомную композицию иона или идентифицировать пептид путем сравнения с базой данных, сократив число кандидатов с тысяч и сотен до единиц или одного единственного. Для магнитных масс-анализаторов, для которых расстояние между пиками масс-спектра не зависит от масс ионов, разрешение представляет собой величину равную M/DM. Эта величина, как правило, определяется по 10 % высоте пика. Так например, разрешение 1000 означает, что пики с массами 100.0 а.е.м. и 100.1 а.е.м. отделяются друг от друга, то есть не накладываются вплоть до 10 % высоты.
Для анализаторов, у которых расстояние между пиками меняется в рабочем диапазоне масс (чем больше масса, тем меньше расстояние), таких как квадрупольные анализаторы, ионные ловушки, времяпролетные анализаторы, строго говоря, разрешение имеет другой смысл. Разрешение, определяемое как M/DM в данном случае, характеризует конкретную массу. Имеет смысл характеризовать эти масс-анализаторы по ширине пиков, величине, остающейся постоянной во всем диапазоне масс. Эта ширина пиков, обычно, измеряется на 50 % их высоты. Для таких приборов ширина пика на полувысоте равная 1 является неплохим показателем и означает, что такой масс-анализатор способен различить номинальные массы, отличающиеся на атомную единицу массы практически во всем его рабочем диапазоне. Номинальной массой или массовым числом называют ближайшее к точной массе иона целое число в шкале атомных единиц массы. Например, масса иона водорода Н+ равна 1.00787 а.е.м., а его массовое число равно 1. А такие масс-анализаторы, которые, в основном, измеряют номинальные массы, называют анализаторами низкого разрешения. Мы написали «в основном», потому что сегодня есть и такие масс-анализаторы, которые формально относятся к низкоразрешающим, а на деле таковыми уже не являются. Высокая технология, прежде всего самого передового разработчика Thermo Electron, уже сегодня предложила на рынок аналитического оборудования высокоразрешающие квадрупольные приборы. Так например, новейший FINNIGAN TSQQuantum легко работает при ширине пика масс-спектра на полувысоте 0.1 а.е.м. Знающие люди могут возразить: «Но такую ширину пика можно получить на каждом квадрупольном масс-спектрометре!» И они будут правы, действительно, каждый квадруполь можно отстроить до этого уровня разрешения. Но что произойдет при этом с сигналом? При переходе от ширины пика на полувысоте в 1 а.е.м. к 0.1 а.е.м. величина сигнала на всех квадруполях упадет практически на два порядка по величине. Но не на TSQ Quantum , на нем она уменьшится всего в два с половиной раза. Ионные ловушки в узком диапазоне масс могут работать как масс-спектрометры высокого разрешения, обеспечивая, как минимум, разделение пиков, отстоящих на 1/4 а.е.м. друг от друга. Масс-спектрометры с двойной фокусировкой (магнитной и электростатической), ионно-циклотронного резонанса - приборы среднего или высокого разрешения. Типичным для магнитного прибора разрешением является >60,000, а работа на уровне разрешения 10,000 - 20,000 является рутинной. На масс-спектрометре ионно-циклотронного резонанса на массе около 500 а.е.м. можно легко достигнуть разрешения 500,000, что позволяет проводить измерения массы ионов с точностью до 4-5 знака после запятой. Разрешения в несколько тысяч также можно добиваться при использовании времяпролетных масс-анализаторов, однако, на высоких массах, в области которых, собственно этот прибор имеет преимущество перед другими, и этого разрешения хватает лишь для того, чтобы измерить массу иона с точностью +/- десятки а.е.м.Как видно из вышесказанного, разрешение тесно связано с другой важной характеристикой - точностью измерения массы. Проиллюстрировать значение этой характеристики можно на простом примере. Массы молекулярных ионов азота (N2+)и монооксида углерода (СО+) составляют 28.00615 а.е.м. и 27.99491 а.е.м., соответственно (оба характеризуются одним массовым числом 28). Эти ионы будут регистрироваться масс-спектрометром порознь при разрешении 2500, а точное значение массы даст ответ - какой из газов регистрируется. Измерение точной массы доступно на приборах с двойной фокусировкой, на тандемном квадрупольном масс-спектрометре TSQ Quantum и на масс-спектрометрах ионно-циклотронного резонанса.

Динамический диапазон. Если мы анализируем смесь, содержащую 99.99 % одного соединения или какого-либо элемента и 0.01% какой-либо примеси, мы должны быть уверены, что правильно определяем и то и другое. Для того, чтобы быть уверенным в определении компонентов в этом примере, нужно иметь диапазон линейности в 4 порядка. Современные масс-спектрометры для органического анализа характеризуются динамическим диапазоном в 5-6 порядков, а масс-спектрометры для элементного анализа 9-12 порядков. Динамический диапазон в 10 порядков означает, что примесь в пробе будет видна даже тогда, когда она составляет 10 миллиграмм на 10 тонн.

Чувствительность. Это одна из важнейших характеристик масс-спектрометров. Чувствительность это величина, показывающая какое количество вещества нужно ввести в масс-спектрометр для того, чтобы его можно было детектировать. Для простоты будем рассматривать связанный с чувствительностью параметр - минимальное определяемое количество вещества, или порог обнаружения. Типичная величина порога обнаружения хорошего хромато-масс-спектрометра, используемого для анализа органических соединений, составляет 1 пикограмм при вводе 1 микролитра жидкости. Давайте представим себе что это такое. Если мы наберем специальным шприцом 1 микролитр жидкости (одна миллионная доля литра) и выпустим ее на листок чистой белой бумаги, то при ее рассмотрении в лупу мы увидим пятнышко, равное по размерам следу от укола тонкой иглой. Теперь представим себе, что мы бросили 1 грамм вещества (например, одну таблетку аспирина) в 1000 тонн воды (например, бассейн длиной 50 метров, шириной 10 метров и глубиной 2 метра). Тщательно перемешаем воду в бассейне, наберем шприцом 1 микролитр этой воды и заколем в хромато-масс-спектрометр. В результате анализа мы получим масс-спектр, который мы сможем сравнить с библиотечным спектром и методом отпечатков пальцев убедиться в том, что это действительно ацетилсалициловая кислота, иначе называемая аспирином.

Пределы обнаружения неорганических веществ, например, методом ICP/MS (FINNIGAN ELEMENT2) еще более впечатляющие. Здесь бассейн уже будет маловат для приготовления раствора с концентрацией, соответствующей пределу обнаружения. Предел обнаружения для FINNIGAN ELEMENT2 по ряду металлов составляет 1 ppq (одна доля на квадриллион). Это значит, что чувствительности прибора достаточна, чтобы детектировать 1 килограмм металла (например, ртути, свинца и т.д.) растворенного в озере Байкал (при условии его перемешивания и полного растворения)!

В масс-спектрометрии изотопов, например, достаточно 800 - 1000 молекул диоксида углерода (СО2, углекислый газ) чтобы получить сигнал углерода. Для того, чтобы продемонстрировать, с какими точностями и изотопными чувствительностями имеет дело изотопная масс-спектрометрия, прибегнем к следующей аллегории. Предположим на одну тысячу совершенно одинаковых яблок, каждое из которых весит 100 грамм, приходится 11 яблок, весящих на 8 % больше, то есть 108 грамм. Все эти яблоки собраны в одном мешке. Этот пример соотвествует соотношению изотопов углерода в природе - на 1000 атомов 12С приходится 11 атомов 13С. Изотопная масс-спектрометрия измеряет соотношения, то есть она способна различить не просто эти 11 яблок, а найти среди многих мешков те, в которых из 1000 стограммовых яблок не 11 стовосьми граммовых, а 10 или 12. Этот пример очень легок для изотопной масс-спектрометрии, на самом деле такие приборы как FINNIGAN DELTAPlus ADVANTAGE, DELTA Plus XP и FINNIGAN МАТ253способны определить разницу в один изотоп (одно сто восьмиграммовое яблоко) среди десяти миллионов атомов (десяти миллионов яблок).

Важнейшая характеристика при анализе органических соединений - это чувствительность. Для того, чтобы достигнуть как можно большей чувствительности при улучшении отношения сигнала к шуму прибегают к детектированию по отдельным выбранным ионам. Выигрыш в чувствительности и селективности при этом колоссальный, но при использовании приборов низкого разрешения приходится приносить в жертву другой важный параметр - достоверность. Ведь если Вы записывали только один пик из всего характеристического масс-спектра, Вам понадобится еще много поработать, чтобы доказать, что этот пик соответствует именно тому компоненту, который Вас интересует. Как же разрешить эту проблему? Использовать высокое разрешение на приборах с двойной фокусировкой, где можно добиться высокого уровня достоверности не жертвуя чувствительностью. Или использовать тандемную масс-спектрометрию, когда каждый пик, соответствующий одиночному иону можно подтвердить масс-спектром дочерних ионов. Итак, абсолютным рекордсменом по чувствительности является органический хромато-масс-спектрометр высокого разрешения с двойной фокусировкой. Так, например, паспортная характеристика DFS гласит, что 2,3,7,8-тетрахлоро-п-дибензодиоксин, введенный через хроматографическую колонку в количестве 10 фемтограмм даст пик, характеризующийся отношением сигнал/шум = 80: 1. Не достижимый ни на каком другом приборе результат!
По характеристике сочетания чувствительности с достоверностью определения компонентов следом за приборами высокого разрешения идут ионные ловушки. Классические квадрупольные приборы нового поколения (TRACE DSQ II) имеют улучшенные характеристики благодаря ряду инноваций, примененных в них, например, использованию искривленного квадрупольного префильтра, предотвращающего попадание нейтральных частиц на детектор и, следовательно, снижению шума.

Зачем нужна масс-спектрометрия

Глубинные физические законы, передовые научные и инженерные разработки, высокотехнологичные вакуумные системы, высокие электрические напряжения, самые лучшие материалы, высочайшее качество их обработки, современнейшая быстродействующая цифровая и аналоговая электроника и компьютерная техника, изощренное программное обеспечение - вот из чего сложен современный масс-спектрометр. И для чего же все это? Для ответа на один из важнейших вопросов мироздания - из чего сложена материя. Но это вопрос не высокой науки, а каждодневной жизни человека.

Например, разработка новых лекарственных средств для спасения человека от ранее неизлечимых болезней и контроль производства лекарств, генная инженерия и биохимия, протеомика. Масс-спектрометрия дала в руки исследователей инструмент, позволяющий идентифицировать белки, определять какие изменения произошли с их структурой вследствие различных взаимодействий, при их воспроизводстве, определить пути метаболизма различных лекарственных средств и других соединений и идентифицировать метаболиты, разрабатывать новые целевые лекарственные средства. Масс-спектрометрия - единственный метод, решающий все эти и многие другие задачи аналитической биохимии.
Без масс-спектрометрии немыслим контроль над незаконным распространением наркотических и психотропных средств, криминалистический и клинический анализ токсичных препаратов, анализ взрывчатых веществ.

Выяснение источника происхождения очень важно для решения целого ряда вопросов: например, определение происхождения взрывчатых веществ помогает найти террористов, наркотиков - бороться с их распространением и перекрывать пути их трафика. Экономическая безопасность страны более надежна, если таможенные службы могут не только подтверждать анализами в сомнительных случаях страну происхождения товара, но и его соотвествие заявленному виду и качеству. А анализ нефти и нефтепродуктов нужен не только для оптимизации процессов переработки нефти или геологам для поиска новых нефтяных полей, но и для того, чтобы определить виновных в разливах нефтяных пятен в океане или на земле.

В эпоху «химизации сельского хозяйства» весьма важным стал вопрос о присутствии следовых количеств применяемых химических средств (например, пестицидов) в пищевых продуктах. В мизерных количествах эти вещества могут нанести непоправимый вред здоровью человека.

Целый ряд техногенных (то есть не существующих в природе, а появившихся в результате индустриальной деятельности человека) веществ являются супертоксикантами (имеющими отравляющее, канцерогенное или вредное для здоровья человека действие в предельно низких концентрациях). Примером является хорошо известный диоксин.

Существование ядерной энергетики немыслимо без масс-спектрометрии. С ее помощью определяется степень обогащения расщепляющихся материалов и их чистота.

Конечно и медицина не обходится без масс-спектрометрии. Изотопная масс-спектрометрия углеродных атомов применяется для прямой медицинской диагностики инфицированности человека Helicobacter Pylori и является самым надежным из всех методов диагностики.
ВЭЖХ/МС системы являются основным аналитическим инструментом при разработке новых лекарственных средств. Без этого метода не может обходиться и контроль качества производимых лекарств и выявления такого распространенного явления как их фальсификация.
Протеомика дала в руки медицины возможность сверхранней диагностики самых страшных заболеваний человечества - раковых опухолей и кардиологических дисфункций. Определение специфических белков, называемых биомаркерами, позволяет проводить раннюю диагностику в онкологии и кардиологии.

Трудно представить область человеческой деятельности, где не нашлось бы места масс-спектрометрии. Ограничимся просто перечислением: биохимия, клиническая химия, общая химия и органическая химия, фармацевтика, косметика, парфюмерия, пищевая промышленность, химический синтез, нефтехимия и нефтепереработка, контроль окружающей среды, производство полимеров и пластиков, медицина и токсикология, криминалистика, допинговый контроль, контроль наркотических средств, контроль алкогольных напитков, геохимия, геология, гидрология, петрография, минералогия, геохронология, археология, ядерная промышленность и энергетика, полупроводниковая промышленность, металлургия.